login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028315
Odd elements in the 5-Pascal triangle A028313.
7
1, 1, 1, 1, 5, 1, 1, 1, 1, 7, 7, 1, 1, 19, 19, 1, 1, 9, 27, 27, 9, 1, 1, 65, 65, 1, 1, 11, 101, 101, 11, 1, 1, 57, 147, 231, 231, 147, 57, 1, 1, 13, 69, 69, 13, 1, 1, 273, 273, 1, 1, 15, 355, 855, 855, 355, 15, 1, 1, 111, 451, 2277, 2277, 451, 111, 1, 1, 17, 127, 1661, 3487, 5379, 5379, 3487, 1661, 127, 17, 1
OFFSET
0,5
LINKS
EXAMPLE
Odd elements of A028313 as an irregular triangle:
1;
1, 1;
1, 5, 1;
1, 1;
1, 7, 7, 1;
1, 19, 19, 1;
1, 9, 27, 27, 9, 1;
1, 65, 65, 1;
1, 11, 101, 101, 11, 1;
1, 57, 147, 231, 231, 147, 57, 1;
1, 13, 69, 69, 13, 1;
1, 273, 273, 1;
1, 15, 355, 855, 855, 355, 15, 1;
...
MATHEMATICA
A028313[n_, k_]:= If[n<2, 1, Binomial[n, k] +3*Binomial[n-2, k-1]];
f= Table[A028313[n, k], {n, 0, 100}, {k, 0, n}]//Flatten;
a[n_]:= DeleteCases[{f[[n+1]]}, _?EvenQ];
Table[a[n], {n, 0, 150}]//Flatten (* G. C. Greubel, Jan 06 2024 *)
PROG
(Magma)
A028313:= func< n, k | n le 1 select 1 else Binomial(n, k) +3*Binomial(n-2, k-1) >;
a:=[A028313(n, k): k in [0..n], n in [0..100]];
[a[n]: n in [1..150] | (a[n] mod 2) eq 1]; // G. C. Greubel, Jan 06 2024
(SageMath)
def A028313(n, k): return 1 if n<2 else binomial(n, k) + 3*binomial(n-2, k-1)
a=flatten([[A028313(n, k) for k in range(n+1)] for n in range(101)])
[a[n] for n in (0..150) if a[n]%2==1] # G. C. Greubel, Jan 06 2024
CROSSREFS
KEYWORD
nonn,tabf
EXTENSIONS
More terms from James A. Sellers
STATUS
approved