login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074062
Reflected (see A074058) pentanacci numbers A074048.
5
5, -1, -1, -1, -1, 9, -7, -1, -1, -1, 19, -23, 5, -1, -1, 39, -65, 33, -7, -1, 79, -169, 131, -47, 5, 159, -417, 431, -225, 57, 313, -993, 1279, -881, 339, 569, -2299, 3551, -3041, 1559, 799, -5167, 9401, -9633, 6159, 39, -11133, 23969, -28667, 21951, -6081, -22305
OFFSET
0,1
COMMENTS
a(n) is also the trace of A^(-n), where A is the matrix ( (1,1,0,0,0), (1,0,1,0,0), (1,0,0,1,0), (1,0,0,0,1), (1,0,0,0,0) ).
a(n) is also the sum of determinants of 4th-order principal minors of A^n.
LINKS
Mario Catalani, Polymatrix and Generalized Polynacci Numbers, arXiv:math/0210201 [math.CO], 2002.
FORMULA
a(n) = -a(n-1) -a(n-2) -a(n-3) -a(n-4) +a(n-5), a(0)=5, a(1)=-1, a(2)=-1, a(3)=-1, a(4)=-1.
G.f.: (5 +4*x +3*x^2 +2*x^3 +x^4)/(1 +x +x^2 +x^3 +x^4 -x^5).
MATHEMATICA
CoefficientList[Series[(5+4*x+3*x^2+2*x^3+x^4)/(1+x+x^2+x^3+x^4-x^5), {x, 0, 60}], x]
PROG
(PARI) Vec((5+4*x+3*x^2+2*x^3+x^4)/(1+x+x^2+x^3+x^4-x^5) + O(x^60)) \\ Michel Marcus, Sep 14 2020
(Magma) I:=[5, -1, -1, -1, -1]; [n le 5 select I[n] else (-1)*(Self(n-1) +Self(n-2) +Self(n-3) +Self(n-4)) + Self(n-5): n in [1..61]]; // G. C. Greubel, Jul 05 2021
(Sage)
def A074062_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (5+4*x+3*x^2+2*x^3+x^4)/(1+x+x^2+x^3+x^4-x^5) ).list()
A074062_list(60) # G. C. Greubel, Jul 05 2021
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Aug 17 2002
EXTENSIONS
More terms from Michel Marcus, Sep 14 2020
STATUS
approved