|
|
|
|
5, -1, -1, -1, -1, 9, -7, -1, -1, -1, 19, -23, 5, -1, -1, 39, -65, 33, -7, -1, 79, -169, 131, -47, 5, 159, -417, 431, -225, 57, 313, -993, 1279, -881, 339, 569, -2299, 3551, -3041, 1559, 799, -5167, 9401, -9633, 6159, 39, -11133, 23969, -28667, 21951, -6081, -22305
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
a(n) is also the trace of A^(-n), where A is the pentamatrix ((1,1,0,0,0), (1,0,1,0,0),(1,0,0,1,0),(1,0,0,0,1),(1,0,0,0,0)).
a(n) is also the sum of determinants of 4th order principal minors of A^n.
|
|
REFERENCES
|
Mario Catalani, "Polymatrix and Generalized Polynacci Numbers", paper in progress.
|
|
LINKS
|
Table of n, a(n) for n=0..51.
Mario Catalani, Polymatrix and Generalized Polynacci Numbers, arXiv:math/0210201 [math.CO], 2002.
|
|
FORMULA
|
a(n) = -a(n-1)-a(n-2)-a(n-3)-a(n-4)+a(n-5), a(0)=5, a(1)=-1, a(2)=-1, a(3)=-1, a(4)=-1.
G.f.: (5+4x+3x^2+2x^3+x^4)/(1+x+x^2+x^3+x^4-x^5).
|
|
MATHEMATICA
|
CoefficientList[Series[5+4*x+3*x^2+2*x^3+x^4)/(1+x+x^2+x^3+x^4-x^5), {x, 0, 40}], x]
|
|
PROG
|
(PARI) Vec((5+4*x+3*x^2+2*x^3+x^4)/(1+x+x^2+x^3+x^4-x^5) + O(x^55)) \\ Michel Marcus, Sep 14 2020
|
|
CROSSREFS
|
Cf. A074058, A074048, A061084.
Sequence in context: A046601 A101025 A028315 * A094635 A220054 A263152
Adjacent sequences: A074059 A074060 A074061 * A074063 A074064 A074065
|
|
KEYWORD
|
easy,sign
|
|
AUTHOR
|
Mario Catalani (mario.catalani(AT)unito.it), Aug 17 2002
|
|
EXTENSIONS
|
More terms from Michel Marcus, Sep 14 2020
|
|
STATUS
|
approved
|
|
|
|