login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358347
a(n) is the sum of the unitary divisors of n that are squares.
6
1, 1, 1, 5, 1, 1, 1, 1, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 1, 26, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 50, 1, 1, 1, 1, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 10, 1, 1, 26, 5, 1, 1, 1, 17, 82, 1
OFFSET
1,4
COMMENTS
The number of unitary divisors of n that are squares is A056624(n).
LINKS
FORMULA
a(n) >= 1 with equality if and only if n is an exponentially odd number (A268335).
Multiplicative with a(p^e) = p^e + 1 if e is even, and 1 otherwise.
a(n) = A034448(n)/A358346(n).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)/(3*zeta(5/2)) = 0.6491241554... .
Dirichlet g.f.: zeta(s)*zeta(2*s-2)/zeta(3*s-2). - Amiram Eldar, Jan 29 2023
a(n) = A034448(A350388(n)). - Amiram Eldar, Sep 09 2023
MATHEMATICA
f[p_, e_] := If[OddQ[e], 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, 1, f[i, 1]^f[i, 2] + 1)); }
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Nov 11 2022
STATUS
approved