login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358345
a(n) is the number of even square divisors of n.
1
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2
OFFSET
1,16
COMMENTS
First differs from A235127 at n = 36.
The first position of k >= 0 in this sequence is A187941(k)^2.
LINKS
FORMULA
a(n) = A046951(n) - A298735(n).
a(n) = 2 * A046951(n) - A046951(4*n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/24 (A222171).
MATHEMATICA
f1[p_, e_] := Floor[e/2] + 1; f2[p_, e_] := If[p == 2, 1, Floor[e/2] + 1]; a[1] = 0; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i=1, #f~, 1+f[i, 2]\2) - prod(i=1, #f~, if(f[i, 1] == 2, 1, 1+f[i, 2]\2))};
(PARI) a(n) = sumdiv(n, d, if (issquare(d) && !(d%2), 1)); \\ Michel Marcus, Nov 11 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 11 2022
STATUS
approved