login
A358345
a(n) is the number of even square divisors of n.
1
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2
OFFSET
1,16
COMMENTS
First differs from A235127 at n = 36.
The first position of k >= 0 in this sequence is A187941(k)^2.
LINKS
FORMULA
a(n) = A046951(n) - A298735(n).
a(n) = 2 * A046951(n) - A046951(4*n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/24 (A222171).
MATHEMATICA
f1[p_, e_] := Floor[e/2] + 1; f2[p_, e_] := If[p == 2, 1, Floor[e/2] + 1]; a[1] = 0; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i=1, #f~, 1+f[i, 2]\2) - prod(i=1, #f~, if(f[i, 1] == 2, 1, 1+f[i, 2]\2))};
(PARI) a(n) = sumdiv(n, d, if (issquare(d) && !(d%2), 1)); \\ Michel Marcus, Nov 11 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 11 2022
STATUS
approved