OFFSET
1,1
COMMENTS
The first 4 terms are Fermat primes from A019434.
Corresponding values of primes q: 2, 5, 19, 65551, 2248681529, ...
Lesser of twin primes of the form 2*m+1 with m a term of A064205.
There are no other terms <= 10^14.
All the terms above 3 are in A145824. - Amiram Eldar, Jan 05 2023
EXAMPLE
17 and 19 are twin primes; sigma((17-1)/2) + tau((17-1)/2) = sigma(8) + tau(8) = 15 + 4 = 19; 19 is prime, so 17 is in the sequence.
MATHEMATICA
Join[{3}, Select[4*Range[25000]^2 + 1, PrimeQ[#] && PrimeQ[# + 2] && PrimeQ[DivisorSigma[1, (# - 1)/2] + DivisorSigma[0, (# - 1)/2]] &]]
(* or *)
A272061 = Cases[Import["https://oeis.org/A272061/b272061.txt", "Table"], {_, _}][[;; , 2]]; Select[A272061, PrimeQ[# + 2] &] (* Amiram Eldar, Jan 05 2023 *)
PROG
(Magma) [n: n in [3..10^7] | IsPrime(n) and IsPrime(n+2) and IsPrime(&+Divisors((n-1) div 2) + #Divisors((n-1) div 2))]
(PARI) isok(p) = if (isprime(p) && isprime(p+2), my(f=factor((p-1)/2)); isprime(sigma(f)+numdiv(f))); \\ Michel Marcus, Nov 23 2022
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Nov 10 2022
STATUS
approved