login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358342
Lesser of twin primes p such that sigma((p-1)/2) + tau((p-1)/2) is a prime.
0
3, 5, 17, 65537, 1927561217, 6015902625062501, 12370388895062501, 835920078368222501, 6448645485213008897, 50973659693056000001, 54332889713542767617, 64304984013657011717, 112112769248058062501, 147337258721536000001
OFFSET
1,1
COMMENTS
Lesser of twin primes p such that A000203((p-1)/2) + A000005((p-1)/2) is a prime q.
The first 4 terms are Fermat primes from A019434.
Corresponding values of primes q: 2, 5, 19, 65551, 2248681529, ...
Subsequence of A272060 and A272061.
Lesser of twin primes of the form 2*m+1 with m a term of A064205.
There are no other terms <= 10^14.
All the terms above 3 are in A145824. - Amiram Eldar, Jan 05 2023
EXAMPLE
17 and 19 are twin primes; sigma((17-1)/2) + tau((17-1)/2) = sigma(8) + tau(8) = 15 + 4 = 19; 19 is prime, so 17 is in the sequence.
MATHEMATICA
Join[{3}, Select[4*Range[25000]^2 + 1, PrimeQ[#] && PrimeQ[# + 2] && PrimeQ[DivisorSigma[1, (# - 1)/2] + DivisorSigma[0, (# - 1)/2]] &]]
(* or *)
A272061 = Cases[Import["https://oeis.org/A272061/b272061.txt", "Table"], {_, _}][[;; , 2]]; Select[A272061, PrimeQ[# + 2] &] (* Amiram Eldar, Jan 05 2023 *)
PROG
(Magma) [n: n in [3..10^7] | IsPrime(n) and IsPrime(n+2) and IsPrime(&+Divisors((n-1) div 2) + #Divisors((n-1) div 2))]
(PARI) isok(p) = if (isprime(p) && isprime(p+2), my(f=factor((p-1)/2)); isprime(sigma(f)+numdiv(f))); \\ Michel Marcus, Nov 23 2022
CROSSREFS
Intersection of A001359 and A272061.
Cf. A000005 (tau), A000203 (sigma), A019434, A064205, A145824, A272060.
Sequence in context: A094487 A007516 A249759 * A039584 A191717 A373405
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Nov 10 2022
STATUS
approved