login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094487
Primes p such that 2^j+p^j are primes for j=0,1,2,4.
1
3, 5, 17, 4517, 5477, 5867, 7457, 8537, 13877, 16067, 22697, 27917, 56477, 59357, 90437, 97577, 101747, 118247, 122207, 124247, 135467, 139457, 140417, 153947, 208697, 247067, 267677, 306947, 419927, 470087, 489407, 520547, 529577, 540347
OFFSET
1,1
EXAMPLE
For j=0 1+1=2 is prime; also terms should be lesser-twin-primes
because of p^1+2^1=p+2=prime; 3rd and 4th conditions are as
follows: prime=p^2+4 and prime=16+p^4.
MATHEMATICA
{ta=Table[0, {100}], u=1}; Do[s0=2; s1=Prime[j]+2; s2=4+Prime[j]^2; s4=16+Prime[j]^4; If[PrimeQ[s0]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s4], Print[{j, Prime[j]}]; ta[[u]]=Prime[j]; u=u+1], {j, 1, 1000000}]
Select[Prime[Range[45000]], AllTrue[{2+#, 4+#^2, 16+#^4}, PrimeQ]&] (* Harvey P. Dale, Sep 18 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 01 2004
STATUS
approved