login
A094485
T(n, k) = Stirling1(n+1, k) - Stirling1(n, k-1), for 1 <= k <= n. Triangle read by rows.
2
-1, 2, -2, -6, 9, -3, 24, -44, 24, -4, -120, 250, -175, 50, -5, 720, -1644, 1350, -510, 90, -6, -5040, 12348, -11368, 5145, -1225, 147, -7, 40320, -104544, 105056, -54152, 15680, -2576, 224, -8, -362880, 986256, -1063116, 605556, -202041, 40824, -4914, 324, -9, 3628800, -10265760, 11727000, -7236800
OFFSET
1,2
FORMULA
E.g.f.: -x*y*(1+y)^(x-1). [T(n,k) = n!*[x^k]([y^n] -x*y*(y+1)^(x-1)).]
The matrix inverse of the Worpitzky triangle. More precisely:
T(n, k) = -n!*InvW(n, k) where InvW is the matrix inverse of A028246. - Peter Luschny, May 26 2020
EXAMPLE
Triangle starts:
[n\k 1 2 3 4 5 6 7 8]
[1] -1;
[2] 2, -2;
[3] -6, 9, -3;
[4] 24, -44, 24, -4;
[5] -120, 250, -175, 50, -5;
[6] 720, -1644, 1350, -510, 90, -6;
[7] -5040, 12348, -11368, 5145, -1225, 147, -7;
[8] 40320, -104544, 105056, -54152, 15680, -2576, 224, -8;
MAPLE
T := (n, k) -> Stirling1(n+1, k) - Stirling1(n, k-1);
seq(seq(T(n, k), k=1..n), n=1..9); # Peter Luschny, May 26 2020
MATHEMATICA
Table[StirlingS1[n+1, k]-StirlingS1[n, k-1], {n, 10}, {k, n}]//Flatten (* Harvey P. Dale, Jul 25 2024 *)
CROSSREFS
KEYWORD
easy,sign,tabl
AUTHOR
Vladeta Jovovic, Jun 05 2004
EXTENSIONS
Offset of k shifted and edited by Peter Luschny, May 26 2020
STATUS
approved