The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A331988 Table T(n,k) read by antidiagonals. T(n,k) is the maximum value of Product_{i=1..n} Sum_{j=1..k} r_j[i] where each r_j is a permutation of {1..n}. 1
 1, 2, 2, 6, 9, 3, 24, 64, 20, 4, 120, 625, 216, 36, 5, 720, 7776, 3136, 512, 56, 6, 5040, 117649, 59049, 10000, 1000, 81, 7, 40320, 2097152, 1331000, 248832, 24336, 1728, 110, 8, 362880, 43046721, 35831808, 7529536, 759375, 50625, 2744, 144, 9, 3628800, 1000000000, 1097199376, 268435456, 28652616, 1889568, 93636, 4096, 182, 10 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A dual sequence to A260355. See arXiv link for sets of permutations that achieve the value of T(n,k). The minimum value of Product_{i=1..n} Sum_{j=1..k} r_j[i] is equal to n!*k^n. LINKS Chai Wah Wu, Table of n, a(n) for n = 1..70 Chai Wah Wu, Permutations r_j such that ∑i∏j r_j(i) is maximized or minimized, arXiv:1508.02934 [math.CO], 2015-2020. Chai Wah Wu, On rearrangement inequalities for multiple sequences, arXiv:2002.10514 [math.CO], 2020. FORMULA T(n,n) = (n*(n+1)/2)^n = A061718(n). T(n,k) <= (k(n+1)/2)^n. T(1,k) = k = A000027(k). T(n,1) = n! = A000142(n). T(2,2m) = 9m^2 = A016766(m). T(2,2m+1) = (3m+1)*(3m+2) = A001504(m). T(n,2) = (n+1)^n = A000169(n+1). T(3,k) = 8k^3 = A016743(k) for k > 1. If n divides k then T(n,k) = (k*(n+1)/2)^n. If k is even then T(n,k) = (k*(n+1)/2)^n. If n is odd and k >= n-1 then T(n,k) = (k*(n+1)/2)^n. If n is even and k is odd such that k >= n-1, then T(n,k) = ((k^2*(n+1)^2-1)/4)^(n/2). EXAMPLE T(n,k)    k    1    2     3      4      5      6      7      8      9     10     11     12   --------------------------------------------------------------------------------- n  1|   1    2     3      4      5      6      7      8      9     10     11     12    2|   2    9    20     36     56     81    110    144    182    225    272    324    3|   6   64   216    512   1000   1728   2744   4096   5832   8000  10648  13824    4|  24  625  3136  10000  24336  50625  93636 160000 256036 390625 571536 810000 PROG (Python) from itertools import permutations, combinations_with_replacement def A331988(n, k): # compute T(n, k)     if k == 1:         count = 1         for i in range(1, n):             count *= i+1         return count     ntuple, count = tuple(range(1, n+1)), 0     for s in combinations_with_replacement(permutations(ntuple, n), k-2):         t = list(ntuple)         for d in s:             for i in range(n):                 t[i] += d[i]         t.sort()         w = 1         for i in range(n):             w *= (n-i)+t[i]         if w > count:             count = w     return count CROSSREFS Cf. A000027, A000142, A000169, A001504, A016743, A016766, A061711, A061718, A260355. Sequence in context: A277510 A169800 A094485 * A242978 A231137 A188808 Adjacent sequences:  A331985 A331986 A331987 * A331989 A331990 A331991 KEYWORD nonn,tabl AUTHOR Chai Wah Wu, Feb 23 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 16:56 EDT 2020. Contains 336381 sequences. (Running on oeis4.)