OFFSET
1,2
COMMENTS
A dual sequence to A260355. See arXiv link for sets of permutations that achieve the value of T(n,k). The minimum value of Product_{i=1..n} Sum_{j=1..k} r_j[i] is equal to n!*k^n.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..70
Chai Wah Wu, Permutations r_j such that ∑i∏j r_j(i) is maximized or minimized, arXiv:1508.02934 [math.CO], 2015-2020.
Chai Wah Wu, On rearrangement inequalities for multiple sequences, arXiv:2002.10514 [math.CO], 2020.
FORMULA
T(n,n) = (n*(n+1)/2)^n = A061718(n).
T(n,k) <= (k(n+1)/2)^n.
T(1,k) = k = A000027(k).
T(n,1) = n! = A000142(n).
T(2,2m) = 9m^2 = A016766(m).
T(2,2m+1) = (3m+1)*(3m+2) = A001504(m).
T(n,2) = (n+1)^n = A000169(n+1).
T(3,k) = 8k^3 = A016743(k) for k > 1.
If n divides k then T(n,k) = (k*(n+1)/2)^n.
If k is even then T(n,k) = (k*(n+1)/2)^n.
If n is odd and k >= n-1 then T(n,k) = (k*(n+1)/2)^n.
If n is even and k is odd such that k >= n-1, then T(n,k) = ((k^2*(n+1)^2-1)/4)^(n/2).
EXAMPLE
T(n,k)
k 1 2 3 4 5 6 7 8 9 10 11 12
---------------------------------------------------------------------------------
n 1| 1 2 3 4 5 6 7 8 9 10 11 12
2| 2 9 20 36 56 81 110 144 182 225 272 324
3| 6 64 216 512 1000 1728 2744 4096 5832 8000 10648 13824
4| 24 625 3136 10000 24336 50625 93636 160000 256036 390625 571536 810000
PROG
(Python)
from itertools import permutations, combinations_with_replacement
def A331988(n, k): # compute T(n, k)
if k == 1:
count = 1
for i in range(1, n):
count *= i+1
return count
ntuple, count = tuple(range(1, n+1)), 0
for s in combinations_with_replacement(permutations(ntuple, n), k-2):
t = list(ntuple)
for d in s:
for i in range(n):
t[i] += d[i]
t.sort()
w = 1
for i in range(n):
w *= (n-i)+t[i]
if w > count:
count = w
return count
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Chai Wah Wu, Feb 23 2020
STATUS
approved