The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A260355 Table T(n,k) read by antidiagonals. T(n,k) is the minimum value of Sum_{i=1..n} Product_{j=1..k} r_j[i] where each r_j is a permutation of {1..n}. 6
 1, 1, 3, 1, 4, 6, 1, 6, 10, 10, 1, 8, 18, 20, 15, 1, 12, 33, 44, 35, 21, 1, 16, 60, 96, 89, 56, 28, 1, 24, 108, 214, 231, 162, 84, 36, 1, 32, 198, 472, 600, 484, 271, 120, 45, 1, 48, 360, 1043, 1564, 1443, 915, 428, 165, 55, 1, 64, 648, 2304, 4074, 4320, 3089, 1608, 642, 220, 66, 1, 96, 1188, 5136, 10618 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS T(1,k) = 1. T(2,k) = A029744(k+2). T(n,1) = n(n+1)/2 (= A000217(n)).  See arXiv link for sets of permutations that achieve the value of T(n,k). LINKS Chai Wah Wu, Permutations r_j such that ∑i∏j r_j(i) is maximized or minimized, arXiv:1508.02934 [math.CO], 2015-2020. Chai Wah Wu, On rearrangement inequalities for multiple sequences, arXiv:2002.10514 [math.CO], 2020. FORMULA From Chai Wah Wu, Feb 24 2020: (Start) T(n,k) >= n*(n!)^(k/n). If n divides k, then T(n,k) = n*(n!)^(k/n). T(n,n) = (n+1)! - n! = A001563(n). T(n,2) = n*(n+1)*(n+2)/6 = A000292(n). (End) EXAMPLE (Partially filled in) table starts (with n rows and k columns): (Third column is A070735, fourth column is A070736)    k    1   2     3     4     5     6     7     8     9    10    11    12     13     14     15   -------------------------------------------------------------------------------------------- n  1|   1   1     1     1     1     1     1     1     1     1     1     1      1      1      1    2|   3   4     6     8    12    16    24    32    48    64    96   128    192    256    384    3|   6  10    18    33    60   108   198   360   648  1188  2145  3888   7083  12844  23328    4|  10  20    44    96   214   472  1043  2304  5136 11328 24993 55296 122624 271040 599832    5|  15  35    89   231   600  1564  4074 10618    6|  21  56   162   484  1443  4320    7|  28  84   271   915  3089    8|  36 120   428  1608    9|  45 165   642  2664   10|  55 220   930  4208   11|  66 286  1304   12|  78 364  1781   13|  91 455  2377   14| 105 560  3111   15| 120 680  4002 (Partially filled in) table of how many nonequivalent sets of permutations achieves the value of T(n,k)    k    1    2     3     4     5     6     7     8     9    10    11    12    13     14     15   -------------------------------------------------------------------------------------------- n  1|   1    1     1     1     1     1     1     1     1     1     1     1     1      1      1    2|   1    1     1     1     1     1     1     1     1     1     1     1     1      1      1    3|   1    1     1     1     1     2     1     2     2     2     1     3     1      1      3    4|   1    1     2     4    11    10    10    81   791   533    24  1461  3634    192   2404    5|   1    1     3    12    16   188   211  2685    6|   1    1    10   110    16    7|   1    1     6    8|   1    1    16    9|   1    1     4   10|   1    1    12   11|   1    1   12|   1    1   13|   1    1   14|   1    1   15|   1    1 PROG (Python) from itertools import permutations, combinations_with_replacement def A260355(n, k): # compute T(n, k)     if k == 1:         return n*(n+1)//2     ntuple, count = tuple(range(1, n+1)), n**(k+1)     for s in combinations_with_replacement(permutations(ntuple, n), k-2):         t = list(ntuple)         for d in s:             for i in range(n):                 t[i] *= d[i]         t.sort()         v = 0         for i in range(n):             v += (n-i)*t[i]         if v < count:             count = v     return count CROSSREFS Cf. A001563, A029744, A000217, A000292 (T(n,2)), A070735 (T(n,3)), A070736 (T(n,4)). Sequence in context: A207619 A209694 A286951 * A075419 A060922 A143790 Adjacent sequences:  A260352 A260353 A260354 * A260356 A260357 A260358 KEYWORD nonn,tabl,hard AUTHOR Chai Wah Wu, Jul 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 14:54 EDT 2020. Contains 337272 sequences. (Running on oeis4.)