login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016743
Even cubes: a(n) = (2*n)^3.
11
0, 8, 64, 216, 512, 1000, 1728, 2744, 4096, 5832, 8000, 10648, 13824, 17576, 21952, 27000, 32768, 39304, 46656, 54872, 64000, 74088, 85184, 97336, 110592, 125000, 140608, 157464, 175616, 195112, 216000, 238328, 262144, 287496, 314432
OFFSET
0,2
COMMENTS
a(n) is also the number of non-degenerate triangles that can be drawn with vertices on a cross with n points on each branch. - James P. B. Hall, Nov 22 2019
LINKS
Hilko Koning, 216 neodymium magnets for n=3.
Ana Rechtman, Mars 2022, 1er défi, Images des Mathématiques, CNRS, 2022 (in French).
FORMULA
a(n) = (2*n)^3 = 8*n^3.
G.f.: x*(8+32*x+8*x^2)/(1-4*x+6*x^2-4*x^3+x^4). - Colin Barker, Jan 02 2012
E.g.f.: 8*x*(1 +3*x +x^2)*exp(x). - G. C. Greubel, Sep 15 2018
From Amiram Eldar, Oct 10 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(3)/8 (A276712).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*zeta(3)/32. (End)
MAPLE
A016743:=n->(2*n)^3: seq(A016743(n), n=0..50); # Wesley Ivan Hurt, Sep 15 2018
MATHEMATICA
Range[0, 78, 2]^3 (* Alonso del Arte, Apr 06 2013 *)
PROG
(Magma) [(2*n)^3: n in [0..50]]; // Vincenzo Librandi, Sep 05 2011
(PARI) a(n) = 8*n^3; \\ Joerg Arndt, Apr 07 2013
CROSSREFS
Even bisection of A000578, cf. A016755.
Cf. A016803 (even bisection), A016827 (odd bisection), A033581, A276712.
Sequence in context: A207113 A207393 A207940 * A340695 A086114 A209651
KEYWORD
nonn,easy
STATUS
approved