OFFSET
0,2
COMMENTS
a(n) is also the number of non-degenerate triangles that can be drawn with vertices on a cross with n points on each branch. - James P. B. Hall, Nov 22 2019
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Hilko Koning, 216 neodymium magnets for n=3.
Ana Rechtman, Mars 2022, 1er défi, Images des Mathématiques, CNRS, 2022 (in French).
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = (2*n)^3 = 8*n^3.
G.f.: x*(8+32*x+8*x^2)/(1-4*x+6*x^2-4*x^3+x^4). - Colin Barker, Jan 02 2012
E.g.f.: 8*x*(1 +3*x +x^2)*exp(x). - G. C. Greubel, Sep 15 2018
From Amiram Eldar, Oct 10 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(3)/8 (A276712).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*zeta(3)/32. (End)
MAPLE
MATHEMATICA
Range[0, 78, 2]^3 (* Alonso del Arte, Apr 06 2013 *)
PROG
(Magma) [(2*n)^3: n in [0..50]]; // Vincenzo Librandi, Sep 05 2011
(PARI) a(n) = 8*n^3; \\ Joerg Arndt, Apr 07 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved