|
|
A016746
|
|
a(n) = (2*n)^6.
|
|
2
|
|
|
0, 64, 4096, 46656, 262144, 1000000, 2985984, 7529536, 16777216, 34012224, 64000000, 113379904, 191102976, 308915776, 481890304, 729000000, 1073741824, 1544804416, 2176782336, 3010936384, 4096000000, 5489031744, 7256313856, 9474296896, 12230590464, 15625000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
|
|
FORMULA
|
G.f.: 64*x*(1+x)*(x^4 + 56*x^3 + 246*x^2 + 56*x + 1) / (1-x)^7. - R. J. Mathar, May 01 2015
E.g.f.: 64*x*(1 + 31*x + 90*x^2 + 65*x^3 + 15*x^4 + x^5)*exp(x). - G. C. Greubel, Sep 15 2018
From Amiram Eldar, Oct 10 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi^6/60480.
Sum_{n>=1} (-1)^(n+1)/a(n) = 31*Pi^6/1935360. (End)
|
|
MAPLE
|
A016746:=n->(2*n)^6: seq(A016746(n), n=0..50); # Wesley Ivan Hurt, Sep 15 2018
|
|
MATHEMATICA
|
Table[(2*n)^6, {n, 0, 30}] (* G. C. Greubel, Sep 15 2018 *)
|
|
PROG
|
(MAGMA) [(2*n)^6: n in [0..30]]; // Vincenzo Librandi, Sep 05 2011
(PARI) vector(30, n, n--; (2*n)^6) \\ G. C. Greubel, Sep 15 2018
|
|
CROSSREFS
|
Cf. A016758.
Sequence in context: A324491 A107627 A017571 * A189268 A223673 A189621
Adjacent sequences: A016743 A016744 A016745 * A016747 A016748 A016749
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|