OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
G.f.: 64*x*(1+x)*(x^4 + 56*x^3 + 246*x^2 + 56*x + 1) / (1-x)^7. - R. J. Mathar, May 01 2015
E.g.f.: 64*x*(1 + 31*x + 90*x^2 + 65*x^3 + 15*x^4 + x^5)*exp(x). - G. C. Greubel, Sep 15 2018
From Amiram Eldar, Oct 10 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi^6/60480.
Sum_{n>=1} (-1)^(n+1)/a(n) = 31*Pi^6/1935360. (End)
MAPLE
MATHEMATICA
Table[(2*n)^6, {n, 0, 30}] (* G. C. Greubel, Sep 15 2018 *)
PROG
(Magma) [(2*n)^6: n in [0..30]]; // Vincenzo Librandi, Sep 05 2011
(PARI) vector(30, n, n--; (2*n)^6) \\ G. C. Greubel, Sep 15 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved