login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A016749 a(n) = (2*n)^9. 2
0, 512, 262144, 10077696, 134217728, 1000000000, 5159780352, 20661046784, 68719476736, 198359290368, 512000000000, 1207269217792, 2641807540224, 5429503678976, 10578455953408, 19683000000000, 35184372088832, 60716992766464, 101559956668416, 165216101262848 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).

FORMULA

a(n) = 10*a(n-1)-45*a(n-2)+ 120*a(n-3)- 210*a(n-4)+252*a(n-5)-210*a(n-6)+120*a(n-7)-45*a(n-8)+10*a(n-9)-a(n-10). - Harvey P. Dale, Jan 13 2013

From Amiram Eldar, Oct 11 2020: (Start)

Sum_{n>=1} 1/a(n) = zeta(9)/512.

Sum_{n>=1} (-1)^(n+1)/a(n) = 255*zeta(9)/131072. (End)

MAPLE

A016749:=n->(2*n)^9: seq(A016749(n), n=0..30); # Wesley Ivan Hurt, Sep 15 2018

MATHEMATICA

Table[(2n)^9, {n, 0, 40}] (* Stefan Steinerberger, Apr 08 2006 *)

LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 512, 262144, 10077696, 134217728, 1000000000, 5159780352, 20661046784, 68719476736, 198359290368}, 20] (* Harvey P. Dale, Jan 13 2013 *)

PROG

(MAGMA) [(2*n)^9: n in [0..20]]; // Vincenzo Librandi, Sep 05 2011

(PARI) vector(30, n, n--; (2*n)^9) \\ G. C. Greubel, Sep 15 2018

CROSSREFS

Cf. A016761.

Sequence in context: A328200 A181244 A181252 * A144323 A320861 A220303

Adjacent sequences:  A016746 A016747 A016748 * A016750 A016751 A016752

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Stefan Steinerberger, Apr 08 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 02:18 EDT 2021. Contains 345411 sequences. (Running on oeis4.)