login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320861
Powers of 2 with initial digit 5.
5
512, 524288, 536870912, 549755813888, 562949953421312, 576460752303423488, 590295810358705651712, 5070602400912917605986812821504, 5192296858534827628530496329220096, 5316911983139663491615228241121378304, 5444517870735015415413993718908291383296
OFFSET
1,1
MAPLE
select(x->"5"=""||x[1], [2^n$n=0..160])[];
# Alternative:
Res:= NULL: count:= 0:
for k from 1 to 49 do
n:= ilog2(6*10^k);
if n > ilog2(5*10^k) then count:= count+1;
Res:= Res, 2^n;
fi
od:
Res; # Robert Israel, Oct 26 2018
MATHEMATICA
Select[2^Range[200], First[IntegerDigits[#]]==5 &] (* Vincenzo Librandi, Oct 25 2018 *)
PROG
(GAP) Filtered(List([0..160], n->2^n), i->ListOfDigits(i)[1]=5);
(PARI) lista(nn) = {for(n=1, nn, x = 2^n; if (digits(x=2^n)[1] == 5, print1(x, ", ")); ); } \\ Michel Marcus, Oct 25 2018
(Magma) [2^n: n in [1..200] | Intseq(2^n)[#Intseq(2^n)] eq 5]; // Vincenzo Librandi, Oct 25 2018
CROSSREFS
Cf. A000079 (powers of 2), A008952 (leading digit of 2^n).
Powers of 2 with initial digit k, (k = 1..5): A067488, A067480, A320859, A320860, this sequence.
Sequence in context: A181252 A016749 A144323 * A347858 A220303 A323542
KEYWORD
base,nonn
AUTHOR
Muniru A Asiru, Oct 23 2018
STATUS
approved