OFFSET
1,2
COMMENTS
Also smallest n-digit power of 2.
For each range 10^(n-1) to 10^n-1 there exists exactly 1 power of 2 with first digit 1 (floor(log_10(a(n))) = n-1). As such, the density of this sequence relative to all powers of 2 (A000079) is log(2)/log(10) (0.301..., A007524), which is prototypical of Benford's Law. - Charles L. Hohn, Jul 23 2024
LINKS
Muniru A Asiru, Table of n, a(n) for n = 1..993
FORMULA
a(n) = 2^ceiling((n-1)*log(10)/log(2)). - Benoit Cloitre, Aug 29 2002
From Charles L. Hohn, Jun 09 2024: (Start)
a(n) = 2^A067497(n-1).
A055642(a(n)) = n. (End)
MATHEMATICA
Select[2^Range[0, 70], First[IntegerDigits[#]] == 1 &] (* Harvey P. Dale, Mar 14 2011 *)
PROG
(PARI) a(n)=2^ceil((n-1)*log(10)/log(2)) \\ Charles R Greathouse IV, Apr 08 2012
(GAP) Filtered(List([0..60], n->2^n), i->ListOfDigits(i)[1]=1); # Muniru A Asiru, Oct 22 2018
(Scala) (List.fill(50)(2: BigInt)).scanLeft(1: BigInt)(_ * _).filter(_.toString.startsWith("1")) // Alonso del Arte, Jan 16 2020
(Magma) [2^n: n in [0..100] | Intseq(2^n)[#Intseq(2^n)] eq 1]; // Vincenzo Librandi, Dec 31 2024
CROSSREFS
KEYWORD
base,easy,nonn,changed
AUTHOR
Amarnath Murthy, Feb 09 2002
STATUS
approved