login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016748
a(n) = (2*n)^8.
1
0, 256, 65536, 1679616, 16777216, 100000000, 429981696, 1475789056, 4294967296, 11019960576, 25600000000, 54875873536, 110075314176, 208827064576, 377801998336, 656100000000, 1099511627776, 1785793904896, 2821109907456, 4347792138496, 6553600000000, 9682651996416
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = 256*A001016(n) = A001016(A005843(n)). - Michel Marcus, Nov 16 2013
G.f.: 256*x*(1+x)*(x^6 + 246*x^5 + 4047*x^4 + 11572*x^3 + 4047*x^2 + 246*x + 1) / (1-x)^9. - R. J. Mathar, May 01 2015
From Amiram Eldar, Oct 11 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi^8/2419200.
Sum_{n>=1} (-1)^(n+1)/a(n) = 127*Pi^8/309657600. (End)
MAPLE
A016748:=n->(2*n)^8; seq(A016748(n), n=0..50); # Wesley Ivan Hurt, Nov 15 2013
MATHEMATICA
Table[(2n)^8, {n, 0, 50}] (* Wesley Ivan Hurt, Nov 15 2013 *)
(2*Range[0, 20])^8 (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 256 , 65536, 1679616, 16777216, 100000000, 429981696, 1475789056, 4294967296}, 20] (* Harvey P. Dale, Jun 14 2016 *)
PROG
(Magma) [(2*n)^8: n in [0..20]]; // Vincenzo Librandi, Sep 05 2011
(PARI) vector(30, n, n--; (2*n)^8) \\ G. C. Greubel, Sep 15 2018
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved