OFFSET
1,2
COMMENTS
a(n) is the number of n X n matrices with nonnegative integer entries such that every row sum equals 2. - Sharon Sela (sharonsela(AT)hotmail.com), May 08 2002
Resultant of the polynomials P(n,x) and Q(n,x) where P(n,x)=sum(k=1,n,k*(-x)^k) and Q(n,x)=x^n-1. - Benoit Cloitre, Jan 26 2003
a(n) is also the number of positive-volume, axis-aligned, n-dimensional rectangular solids that have vertices in the set {0,1,...,n}^n. Proof: If (M_1,...,M_n) is the corner with the maximum coordinate values for such a solid, then there are (M_1)*...*(M_n) possibilities for the corner with the minimum coordinate values. The sum over all possibilities for M_1, ..., M_n can be factored into the product of n sums; each of the n sums simplifies to n(n+1)/2. - Lee A. Newberg, Aug 31 2009
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..100
FORMULA
Sum(i=1..n,j=1..n,k=1..n,...,(i*j*k*...)). E.g., a(2) = 9 because 1*1 + 1*2 + 2*1 + 2*2 = 9. - Ben Paul Thurston, Aug 15 2006
a(n) = [x^n] 1/(1 - (n*(n + 1)/2)*x). - Ilya Gutkovskiy, Oct 10 2017
MAPLE
a:=n->mul(sum(j, j=0..n), k=1..n): seq(a(n), n=1..13); # Zerinvary Lajos, Jun 02 2007
a:=n->mul(binomial(n+2, 2), k=0..n): seq(a(n), n=0..12); # Zerinvary Lajos, Oct 02 2007
MATHEMATICA
Table[((n(n+1))/2)^n, {n, 20}] (* Harvey P. Dale, Dec 09 2022 *)
With[{nn=15}, #[[1]]^#[[2]]&/@Thread[{Accumulate[Range[nn]], Range[nn]}]] (* Harvey P. Dale, Dec 25 2023 *)
PROG
(C++) /* e.g. n = 6: */
int main()
{
int sum = 0;
for(int i = 1; i < 7; i++)
for(int j = 1; j < 7; j++)
for(int k=1; k<7; k++)
for(int l = 1; l < 7; l++)
for(int m = 1; m < 7; m++)
for(int n = 1; n < 7; n++)
sum += i*j*k*l*m*n;
cout << sum << endl;
return 0;
} // Ben Paul Thurston, Aug 15 2006
(PARI) { for (n=1, 100, write("b061718.txt", n, " ", (n*(n + 1)/2)^n) ) } \\ Harry J. Smith, Jul 26 2009
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Jun 20 2001
STATUS
approved