login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061718
a(n) = (n*(n+1)/2)^n.
4
1, 9, 216, 10000, 759375, 85766121, 13492928512, 2821109907456, 756680642578125, 253295162119140625, 103510234140112521216, 50714860157241037295616, 29345269354638035222576971
OFFSET
1,2
COMMENTS
a(n) is the number of n X n matrices with nonnegative integer entries such that every row sum equals 2. - Sharon Sela (sharonsela(AT)hotmail.com), May 08 2002
Resultant of the polynomials P(n,x) and Q(n,x) where P(n,x)=sum(k=1,n,k*(-x)^k) and Q(n,x)=x^n-1. - Benoit Cloitre, Jan 26 2003
a(n) is also the number of positive-volume, axis-aligned, n-dimensional rectangular solids that have vertices in the set {0,1,...,n}^n. Proof: If (M_1,...,M_n) is the corner with the maximum coordinate values for such a solid, then there are (M_1)*...*(M_n) possibilities for the corner with the minimum coordinate values. The sum over all possibilities for M_1, ..., M_n can be factored into the product of n sums; each of the n sums simplifies to n(n+1)/2. - Lee A. Newberg, Aug 31 2009
LINKS
FORMULA
Sum(i=1..n,j=1..n,k=1..n,...,(i*j*k*...)). E.g., a(2) = 9 because 1*1 + 1*2 + 2*1 + 2*2 = 9. - Ben Paul Thurston, Aug 15 2006
a(n) = [x^n] 1/(1 - (n*(n + 1)/2)*x). - Ilya Gutkovskiy, Oct 10 2017
MAPLE
a:=n->mul(sum(j, j=0..n), k=1..n): seq(a(n), n=1..13); # Zerinvary Lajos, Jun 02 2007
a:=n->mul(binomial(n+2, 2), k=0..n): seq(a(n), n=0..12); # Zerinvary Lajos, Oct 02 2007
MATHEMATICA
Table[((n(n+1))/2)^n, {n, 20}] (* Harvey P. Dale, Dec 09 2022 *)
With[{nn=15}, #[[1]]^#[[2]]&/@Thread[{Accumulate[Range[nn]], Range[nn]}]] (* Harvey P. Dale, Dec 25 2023 *)
PROG
(C++) /* e.g. n = 6: */
int main()
{
int sum = 0;
for(int i = 1; i < 7; i++)
for(int j = 1; j < 7; j++)
for(int k=1; k<7; k++)
for(int l = 1; l < 7; l++)
for(int m = 1; m < 7; m++)
for(int n = 1; n < 7; n++)
sum += i*j*k*l*m*n;
cout << sum << endl;
return 0;
} // Ben Paul Thurston, Aug 15 2006
(PARI) { for (n=1, 100, write("b061718.txt", n, " ", (n*(n + 1)/2)^n) ) } \\ Harry J. Smith, Jul 26 2009
CROSSREFS
Cf. A066300.
Sequence in context: A217042 A064633 A084942 * A085741 A211044 A152288
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Jun 20 2001
STATUS
approved