login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n*(n+1)/2)^n.
4

%I #29 Dec 25 2023 15:09:24

%S 1,9,216,10000,759375,85766121,13492928512,2821109907456,

%T 756680642578125,253295162119140625,103510234140112521216,

%U 50714860157241037295616,29345269354638035222576971

%N a(n) = (n*(n+1)/2)^n.

%C a(n) is the number of n X n matrices with nonnegative integer entries such that every row sum equals 2. - Sharon Sela (sharonsela(AT)hotmail.com), May 08 2002

%C Resultant of the polynomials P(n,x) and Q(n,x) where P(n,x)=sum(k=1,n,k*(-x)^k) and Q(n,x)=x^n-1. - _Benoit Cloitre_, Jan 26 2003

%C a(n) is also the number of positive-volume, axis-aligned, n-dimensional rectangular solids that have vertices in the set {0,1,...,n}^n. Proof: If (M_1,...,M_n) is the corner with the maximum coordinate values for such a solid, then there are (M_1)*...*(M_n) possibilities for the corner with the minimum coordinate values. The sum over all possibilities for M_1, ..., M_n can be factored into the product of n sums; each of the n sums simplifies to n(n+1)/2. - _Lee A. Newberg_, Aug 31 2009

%H Harry J. Smith, <a href="/A061718/b061718.txt">Table of n, a(n) for n = 1..100</a>

%F Sum(i=1..n,j=1..n,k=1..n,...,(i*j*k*...)). E.g., a(2) = 9 because 1*1 + 1*2 + 2*1 + 2*2 = 9. - _Ben Paul Thurston_, Aug 15 2006

%F a(n) = [x^n] 1/(1 - (n*(n + 1)/2)*x). - _Ilya Gutkovskiy_, Oct 10 2017

%p a:=n->mul(sum(j, j=0..n),k=1..n): seq(a(n), n=1..13); # _Zerinvary Lajos_, Jun 02 2007

%p a:=n->mul(binomial(n+2,2), k=0..n): seq(a(n), n=0..12); # _Zerinvary Lajos_, Oct 02 2007

%t Table[((n(n+1))/2)^n,{n,20}] (* _Harvey P. Dale_, Dec 09 2022 *)

%t With[{nn=15},#[[1]]^#[[2]]&/@Thread[{Accumulate[Range[nn]],Range[nn]}]] (* _Harvey P. Dale_, Dec 25 2023 *)

%o (C++) /* e.g. n = 6: */

%o int main()

%o {

%o int sum = 0;

%o for(int i = 1; i < 7; i++)

%o for(int j = 1; j < 7; j++)

%o for(int k=1;k<7; k++)

%o for(int l = 1; l < 7; l++)

%o for(int m = 1; m < 7; m++)

%o for(int n = 1; n < 7; n++)

%o sum += i*j*k*l*m*n;

%o cout << sum << endl;

%o return 0;

%o } // _Ben Paul Thurston_, Aug 15 2006

%o (PARI) { for (n=1, 100, write("b061718.txt", n, " ", (n*(n + 1)/2)^n) ) } \\ _Harry J. Smith_, Jul 26 2009

%Y Cf. A066300.

%K easy,nonn

%O 1,2

%A _Jason Earls_, Jun 20 2001