OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = [x^n] (x*(5 + 3*x)/(1 - x)^4).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = binomial(n+2, 3) + binomial(n+1, 3) + 2*(n+1)*binomial(n+1, 2).
From G. C. Greubel, Apr 19 2023: (Start)
a(n) = 3*binomial(n+1,1) - 11*binomial(n+2,2) + 8*binomial(n+3,3).
a(n) = n*binomial(8*n+8,2)/24.
a(n) = n*(n+1)*(8*n+7)/6.
E.g.f.: (1/6)*x*(30 + 39*x + 8*x^2)*exp(x). (End)
MAPLE
a := n -> ((n+1) - 9*(n+1)^2 + 8*(n+1)^3)/6: seq(a(n), n=0..41);
gf := (x*(3*x + 5))/(x - 1)^4: ser := series(gf, x, 44):
seq(coeff(ser, x, n), n=0..41);
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {0, 5, 23, 62}, 42]
Table[(n-9n^2+8n^3)/6, {n, 50}] (* Harvey P. Dale, Apr 11 2024 *)
PROG
(Magma) [n*(n+1)*(8*n+7)/6: n in [0..50]]; // G. C. Greubel, Apr 19 2023
(SageMath)
def A331987(n): return n*(n+1)*(8*n+7)/6
[A331987(n) for n in range(51)] # G. C. Greubel, Apr 19 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Feb 19 2020
STATUS
approved