login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331987
a(n) = ((n + 1) - 9*(n + 1)^2 + 8*(n + 1)^3)/6.
4
0, 5, 23, 62, 130, 235, 385, 588, 852, 1185, 1595, 2090, 2678, 3367, 4165, 5080, 6120, 7293, 8607, 10070, 11690, 13475, 15433, 17572, 19900, 22425, 25155, 28098, 31262, 34655, 38285, 42160, 46288, 50677, 55335, 60270, 65490, 71003, 76817, 82940, 89380, 96145
OFFSET
0,2
COMMENTS
The start values of the partial rows on the main diagonal of A332662 in the representation in the example section.
Apparently the sum of the hook lengths over the partitions of 2*n + 1 with exactly 2 parts (cf. A180681).
FORMULA
a(n) = [x^n] (x*(5 + 3*x)/(1 - x)^4).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = binomial(n+2, 3) + binomial(n+1, 3) + 2*(n+1)*binomial(n+1, 2).
From G. C. Greubel, Apr 19 2023: (Start)
a(n) = 3*binomial(n+1,1) - 11*binomial(n+2,2) + 8*binomial(n+3,3).
a(n) = n*binomial(8*n+8,2)/24.
a(n) = n*(n+1)*(8*n+7)/6.
E.g.f.: (1/6)*x*(30 + 39*x + 8*x^2)*exp(x). (End)
MAPLE
a := n -> ((n+1) - 9*(n+1)^2 + 8*(n+1)^3)/6: seq(a(n), n=0..41);
gf := (x*(3*x + 5))/(x - 1)^4: ser := series(gf, x, 44):
seq(coeff(ser, x, n), n=0..41);
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {0, 5, 23, 62}, 42]
Table[(n-9n^2+8n^3)/6, {n, 50}] (* Harvey P. Dale, Apr 11 2024 *)
PROG
(Magma) [n*(n+1)*(8*n+7)/6: n in [0..50]]; // G. C. Greubel, Apr 19 2023
(SageMath)
def A331987(n): return n*(n+1)*(8*n+7)/6
[A331987(n) for n in range(51)] # G. C. Greubel, Apr 19 2023
CROSSREFS
Apparently a bisection of A049779 and of A024862.
Sequence in context: A179094 A373538 A176874 * A241765 A106956 A084671
KEYWORD
nonn
AUTHOR
Peter Luschny, Feb 19 2020
STATUS
approved