login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024862
a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = natural numbers, t = odd natural numbers.
2
3, 5, 17, 23, 50, 62, 110, 130, 205, 235, 343, 385, 532, 588, 780, 852, 1095, 1185, 1485, 1595, 1958, 2090, 2522, 2678, 3185, 3367, 3955, 4165, 4840, 5080, 5848, 6120, 6987, 7293, 8265, 8607, 9690, 10070, 11270, 11690, 13013, 13475, 14927, 15433, 17020, 17572, 19300
OFFSET
2,1
FORMULA
G.f.: x^2*(3+2*x+3*x^2) / ((1+x)^3*(x-1)^4). - R. J. Mathar, Sep 25 2013
a(n) = 3*A058187(n-2) + 2*A058187(n-3) + 3*A058187(n-4). - R. J. Mathar, Sep 25 2013
From Colin Barker, Jan 29 2016: (Start)
a(n) = (8*n^3 + 6*(-1)^n*n^2 + 12*n^2 + 6*(-1)^n*n - 2*n + 3*(-1)^n - 3)/48.
a(n) = (4*n^3 + 9*n^2 + 2*n)/24 for n even.
a(n) = (4*n^3 + 3*n^2 - 4*n - 3)/24 for n odd. (End)
E.g.f.: (1/48)*(3*(1 - 4*x + 2*x^2)*exp(-x) + (-3 + 18*x + 36*x^2 + 8*x^3)*exp(x)). - G. C. Greubel, Apr 19 2023
MATHEMATICA
CoefficientList[Series[(3+2x+3x^2)/((1+x)^3 (1-x)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 25 2013 *)
PROG
(PARI) Vec(x^2*(3+2*x+3*x^2)/((1+x)^3*(x-1)^4) + O(x^100)) \\ Colin Barker, Jan 29 2016
(Magma) [((2*n-1)*(2*n+1)*(2*n+3) +3*(-1)^n*(n^2+(n+1)^2))/48: n in [2..50]]; // G. C. Greubel, Apr 19 2023
(SageMath) [((2*n-1)*(2*n+1)*(2*n+3) +3*(-1)^n*(n^2+(n+1)^2))/48 for n in range(2, 51)] # G. C. Greubel, Apr 19 2023
CROSSREFS
Cf. A058187.
Sequence in context: A100564 A231232 A154608 * A025106 A333199 A203193
KEYWORD
nonn,easy
STATUS
approved