login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024865
a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A000027, t = A023533.
1
0, 0, 1, 2, 3, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 23, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30
OFFSET
2,4
LINKS
MATHEMATICA
A023533[n_]:= A023533[n]= If[Binomial[Floor[Surd[6*n-1, 3]] +2, 3] != n, 0, 1];
A024865[n_]:= A024865[n]= Sum[j*A023533[n-j+1], {j, Floor[n/2]}];
Table[A024865[n], {n, 2, 130}] (* G. C. Greubel, Sep 07 2022 *)
PROG
(Magma)
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
A024865:= func< n | (&+[k*A023533(n+1-k): k in [1..Floor(n/2)]]) >;
[A024865(n): n in [2..130]]; // G. C. Greubel, Sep 07 2022
(SageMath)
@CachedFunction
def A023533(n): return 0 if (binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n) else 1
def A024865(n): return sum(k*A023533(n-k+1) for k in (1..(n//2)))
[A024865(n) for n in (2..130)] # G. C. Greubel, Sep 07 2022
CROSSREFS
Sequence in context: A362363 A037846 A037882 * A025109 A348710 A048735
KEYWORD
nonn
STATUS
approved