login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025109
a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = (F(2), F(3), F(4), ...), t = A023533.
2
0, 0, 1, 2, 3, 0, 0, 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1598, 2586, 4184, 6770, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28658, 46370, 75028, 121398, 196426, 317824, 514250
OFFSET
2,4
LINKS
FORMULA
a(n) = Sum_{k=1..floor(n/2)} Fibonacci(k+1)*A023533(n-k+1).
MATHEMATICA
A023533[n_]:= If[Binomial[Floor[Surd[6*n-1, 3]] + 2, 3] != n, 0, 1];
A025109[n_]:= A025109[n]= Sum[Fibonacci[k+1]*A023533[n+1-k], {k, Floor[n/2]}];
Table[A025109[n], {n, 2, 100}] (* G. C. Greubel, Jul 14 2022 *)
PROG
(Magma)
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
[(&+[Fibonacci(k+1)*A023533(n-k+1): k in [1..Floor(n/2)]]): n in [2..100]]; // G. C. Greubel, Jul 14 2022
(SageMath)
def A023533(n):
if binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n: return 0
else: return 1
[sum(fibonacci(k+1)*A023533(n-k+1) for k in (1..(n//2))) for n in (2..100)] # G. C. Greubel, Jul 14 2022
CROSSREFS
KEYWORD
nonn
EXTENSIONS
a(36) corrected by Sean A. Irvine, Aug 07 2019
Offset corrected by G. C. Greubel, Jul 14 2022
STATUS
approved