Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Apr 20 2023 02:27:55
%S 3,5,17,23,50,62,110,130,205,235,343,385,532,588,780,852,1095,1185,
%T 1485,1595,1958,2090,2522,2678,3185,3367,3955,4165,4840,5080,5848,
%U 6120,6987,7293,8265,8607,9690,10070,11270,11690,13013,13475,14927,15433,17020,17572,19300
%N a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = natural numbers, t = odd natural numbers.
%H Vincenzo Librandi, <a href="/A024862/b024862.txt">Table of n, a(n) for n = 2..1000</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1).
%F G.f.: x^2*(3+2*x+3*x^2) / ((1+x)^3*(x-1)^4). - _R. J. Mathar_, Sep 25 2013
%F a(n) = 3*A058187(n-2) + 2*A058187(n-3) + 3*A058187(n-4). - _R. J. Mathar_, Sep 25 2013
%F From _Colin Barker_, Jan 29 2016: (Start)
%F a(n) = (8*n^3 + 6*(-1)^n*n^2 + 12*n^2 + 6*(-1)^n*n - 2*n + 3*(-1)^n - 3)/48.
%F a(n) = (4*n^3 + 9*n^2 + 2*n)/24 for n even.
%F a(n) = (4*n^3 + 3*n^2 - 4*n - 3)/24 for n odd. (End)
%F E.g.f.: (1/48)*(3*(1 - 4*x + 2*x^2)*exp(-x) + (-3 + 18*x + 36*x^2 + 8*x^3)*exp(x)). - _G. C. Greubel_, Apr 19 2023
%t CoefficientList[Series[(3+2x+3x^2)/((1+x)^3 (1-x)^4), {x,0,50}], x] (* _Vincenzo Librandi_, Sep 25 2013 *)
%o (PARI) Vec(x^2*(3+2*x+3*x^2)/((1+x)^3*(x-1)^4) + O(x^100)) \\ _Colin Barker_, Jan 29 2016
%o (Magma) [((2*n-1)*(2*n+1)*(2*n+3) +3*(-1)^n*(n^2+(n+1)^2))/48: n in [2..50]]; // _G. C. Greubel_, Apr 19 2023
%o (SageMath) [((2*n-1)*(2*n+1)*(2*n+3) +3*(-1)^n*(n^2+(n+1)^2))/48 for n in range(2,51)] # _G. C. Greubel_, Apr 19 2023
%Y Cf. A058187.
%K nonn,easy
%O 2,1
%A _Clark Kimberling_