login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131553
a(n) = Product_{k=1..n, gcd(k,n)=1} (1+k).
0
2, 2, 6, 8, 120, 12, 5040, 384, 12960, 640, 39916800, 1152, 6227020800, 80640, 5443200, 10321920, 355687428096000, 290304, 121645100408832000, 38707200, 384758035200, 6812467200, 25852016738884976640000, 139345920
OFFSET
1,1
EXAMPLE
The positive integers that are <= 9 and are coprime to 9 are 1,2,4,5,7,8.
So a(9) = (1+1)(1+2)(1+4)(1+5)(1+7)(1+8) = 2*3*5*6*8*9 = 12960.
MAPLE
a:=proc(n) local p, k: p:=1: for k to n do if gcd(k, n)=1 then p:=p*(1+k) else end if end do: p end proc: seq(a(n), n=1..22); # Emeric Deutsch, Sep 05 2007
for n to 25 do pr:=1: for k to n do if gcd(k, n)=1 then pr:=pr*(1+k) else end if end do: a[n]:=pr end do: seq(a[n], n=1..25); # Emeric Deutsch, Aug 28 2007
MATHEMATICA
Table[Times @@ (1 + Select[Range[n], GCD[ #, n] == 1 &]), {n, 1, 40}] (* Stefan Steinerberger, Sep 14 2007 *)
PROG
(PARI) rr(n) = pp=1; for(i=1, n, if(gcd(i, n)==1, pp=pp*(1+i))); return(pp); for(j=1, 60, print1(rr(j), ", ")) \\ Matthew Conroy, Sep 05 2007
CROSSREFS
Sequence in context: A357950 A201499 A346201 * A277510 A169800 A094485
KEYWORD
nonn
AUTHOR
Leroy Quet, Aug 26 2007
STATUS
approved