login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346201
Triangular array read by rows. T(n,k) is the number of n X n matrices over GF(2) such that the sum of the dimensions of their eigenspaces taken over all eigenvalues is k, 0 <= k <= n, n >= 0.
0
1, 0, 2, 2, 6, 8, 48, 196, 210, 58, 5824, 23280, 27020, 8610, 802, 2887680, 11550848, 13756560, 4757260, 581250, 20834, 5821595648, 23286380544, 28097284992, 10075582800, 1369706604, 67874562, 1051586, 47317927329792, 189271709384704, 229853403924480, 83865929653632, 11957394226896, 668707460652, 14779207170, 102233986
OFFSET
0,3
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
EXAMPLE
1;
0, 2;
2, 6, 8;
48, 196, 210, 58;
5824, 23280, 27020, 8610, 802;
2887680, 11550848, 13756560, 4757260, 581250, 20834;
MATHEMATICA
nn = 8; q = 2; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}]; A001037 =
Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; g[u_, v_] :=
Total[Map[v^Length[#] u^Total[#]/aut[1, #] &, Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]]; Table[Take[(Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[g[u, v] g[u, v] Product[Product[1/(1 - (u/q^r)^d), {r, 1, \[Infinity]}]^A001037[[d]], {d, 2, nn}], {u, 0, nn}], {u, v}])[[n]],
n], {n, 1, nn}] // Grid
CROSSREFS
Cf. A002820 (column k=0), A132186 (main diagonal), A002416 (row sums).
Sequence in context: A334499 A357950 A201499 * A131553 A277510 A169800
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jul 16 2021
STATUS
approved