OFFSET
1,1
EXAMPLE
a(3)=148 because 3^148 (i.e. 41109831670569663658300086939077404909608122265524774868353822811305361) is the smallest power of 3 to contain a run of 3 consecutive twos in its decimal form.
MATHEMATICA
a = ""; Do[ a = StringJoin[a, "2"]; b = StringJoin[a, "2"]; k = 1; While[ StringPosition[ ToString[3^k], a] == {} || StringPosition[ ToString[3^k], b] != {}, k++ ]; Print[k], {n, 1, 10} ]
PROG
(Python)
def a(n):
k, n2, np2 = 1, '2'*n, '2'*(n+1)
while True:
while not n2 in str(3**k): k += 1
if np2 not in str(3**k): return k
k += 1
print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Mar 19 2021
CROSSREFS
KEYWORD
more,nonn,base
AUTHOR
Shyam Sunder Gupta, Aug 26 2007
EXTENSIONS
a(11)-a(14) from Lars Blomberg, Feb 02 2013
a(15) from Bert Dobbelaere, Mar 04 2019
STATUS
approved