login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005258
Apéry numbers: a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n+k,k).
(Formerly M3057)
114
1, 3, 19, 147, 1251, 11253, 104959, 1004307, 9793891, 96918753, 970336269, 9807518757, 99912156111, 1024622952993, 10567623342519, 109527728400147, 1140076177397091, 11911997404064793, 124879633548031009, 1313106114867738897, 13844511065506477501
OFFSET
0,2
COMMENTS
This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
Equals the main diagonal of square array A108625. - Paul D. Hanna, Jun 14 2005
This sequence is t_5 in Cooper's paper. - Jason Kimberley, Nov 25 2012
Conjecture: For each n=1,2,3,... the polynomial a_n(x) = Sum_{k=0..n} C(n,k)^2*C(n+k,k)*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
Diagonal of rational functions 1/(1 - x - x*y - y*z - x*z - x*y*z), 1/(1 + y + z + x*y + y*z + x*z + x*y*z), 1/(1 - x - y - z + x*y + x*y*z), 1/(1 - x - y - z + y*z + x*z - x*y*z). - Gheorghe Coserea, Jul 07 2018
REFERENCES
Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
S. Melczer, An Invitation to Analytic Combinatorics, 2021; p. 129.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
B. Adamczewski, J. P. Bell, and E. Delaygue, Algebraic independence of G-functions and congruences "a la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.
R. Apéry, Irrationalité de zeta(2) et zeta(3), in Journées Arith. de Luminy. Colloque International du Centre National de la Recherche Scientifique (CNRS) held at the Centre Universitaire de Luminy, Luminy, Jun 20-24, 1978. Astérisque, 61 (1979), 11-13.
R. Apéry, Sur certaines séries entières arithmétiques, Groupe de travail d'analyse ultramétrique, 9 no. 1 (1981-1982), Exp. No. 16, 2 p.
Thomas Baruchel and C. Elsner, On error sums formed by rational approximations with split denominators, arXiv preprint arXiv:1602.06445 [math.NT], 2016.
Arnaud Beauville, Les familles stables de courbes sur P_1 admettant quatre fibres singulières, Comptes Rendus, Académie Sciences Paris, no. 294, May 24 1982, page 657.
F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987), no. 2, 201-210.
A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
Francis Brown, Irrationality proofs for zeta values, moduli spaces and dinner parties, arXiv:1412.6508 [math.NT], 2014.
Shaun Cooper, Apéry-like sequences defined by four-term recurrence relations, arXiv:2302.00757 [math.NT], 2023.
M. Coster, Email, Nov 1990
E. Delaygue, Arithmetic properties of Apéry-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013-2015.
E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Number Theory 117 (2006), 191-215.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See D p. 2.
S. Herfurtner, Elliptic surfaces with four singular fibres, Mathematische Annalen, 1991. Preprint.
Michael D. Hirschhorn, A Connection Between Pi and Phi, Fibonacci Quart. 53 (2015), no. 1, 42-47.
Lalit Jain and Pavlos Tzermias, Beukers' integrals and Apéry's recurrences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.1.
Bradley Klee, Checking Weierstrass data, 2023.
Ji-Cai Liu, Supercongruences for the (p-1)th Apéry number, arXiv:1803.11442 [math.NT], 2018.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.
R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
Peter Paule and Carsten Schneider, Computer proofs of a new family of harmonic number identities, Advances in Applied Mathematics (31), 359-378, (2003).
E. Rowland and R. Yassawi, Automatic congruences for diagonals of rational functions, arXiv preprint arXiv:1310.8635 [math.NT], 2013.
V. Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.
Zhi-Hong Sun, Congruences for Apéry-like numbers, arXiv:1803.10051 [math.NT], 2018.
Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020.
A. van der Poorten, A proof that Euler missed ... Apéry's proof of the irrationality of zeta(3). An informal report. Math. Intelligencer 1 (1978/79), no 4, 195-203.
Eric Weisstein's World of Mathematics, Apéry Number.
D. Zagier, Integral solutions of Apéry-like recurrence equations. See line D in sporadic solutions table of page 5.
W. Zudilin, Approximations to -, di- and tri-logarithms, arXiv:math/0409023 [math.CA], 2004-2005.
FORMULA
a(n) = hypergeom([n+1, -n, -n], [1, 1], 1). - Vladeta Jovovic, Apr 24 2003
D-finite with recurrence: (n+1)^2 * a(n+1) = (11*n^2+11*n+3) * a(n) + n^2 * a(n-1). - Matthijs Coster, Apr 28 2004
Let b(n) be the solution to the above recurrence with b(0) = 0, b(1) = 5. Then the b(n) are rational numbers with b(n)/a(n) -> zeta(2) very rapidly. The identity b(n)*a(n-1) - b(n-1)*a(n) = (-1)^(n-1)*5/n^2 leads to a series acceleration formula: zeta(2) = 5 * Sum_{n >= 1} 1/(n^2*a(n)*a(n-1)) = 5*(1/(1*3) + 1/(2^2*3*19) + 1/(3^2*19*147) + ...). Similar results hold for the constant e: see A143413. - Peter Bala, Aug 14 2008
G.f.: hypergeom([1/12, 5/12],[1], 1728*x^5*(1-11*x-x^2)/(1-12*x+14*x^2+12*x^3+x^4)^3) / (1-12*x+14*x^2+12*x^3+x^4)^(1/4). - Mark van Hoeij, Oct 25 2011
a(n) ~ ((11+5*sqrt(5))/2)^(n+1/2)/(2*Pi*5^(1/4)*n). - Vaclav Kotesovec, Oct 05 2012
1/Pi = 5*(sqrt(47)/7614)*Sum_{n>=0} (-1)^n a(n)*binomial(2n,n)*(682n+71)/15228^n. [Cooper, equation (4)] - Jason Kimberley, Nov 26 2012
a(-1 - n) = (-1)^n * a(n) if n>=0. a(-1 - n) = -(-1)^n * a(n) if n<0. - Michael Somos, Sep 18 2013
0 = a(n)*(a(n+1)*(+4*a(n+2) + 83*a(n+3) - 12*a(n+4)) + a(n+2)*(+32*a(n+2) + 902*a(n+3) - 147*a(n+4)) + a(n+3)*(-56*a(n+3) + 12*a(n+4))) + a(n+1)*(a(n+1)*(+17*a(n+2) + 374*a(n+3) - 56*a(n+4)) + a(n+2)*(+176*a(n+2) + 5324*a(n+3) - 902*a(n+4) + a(n+3)*(-374*a(n+3) + 83*a(n+4))) + a(n+2)*(a(n+2)*(-5*a(n+2) - 176*a(n+3) + 32*a(n+4)) + a(n+3)*(+17*a(n+3) - 4*a(n+4))) for all n in Z. - Michael Somos, Aug 06 2016
a(n) = binomial(2*n, n)*hypergeom([-n, -n, -n],[1, -2*n], 1). - Peter Luschny, Feb 10 2018
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*binomial(n+k,k)^2. - Peter Bala, Feb 10 2018
G.f. y=A(x) satisfies: 0 = x*(x^2 + 11*x - 1)*y'' + (3*x^2 + 22*x - 1)*y' + (x + 3)*y. - Gheorghe Coserea, Jul 01 2018
From Peter Bala, Jan 15 2020: (Start)
a(n) = Sum_{0 <= j, k <= n} (-1)^(j+k)*C(n,k)*C(n+k,k)^2*C(n,j)* C(n+k+j,k+j).
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j)*C(n,k)^2*C(n+k,k)*C(n,j)* C(n+k+j,k+j).
a(n) = Sum_{0 <= j, k <= n} (-1)^j*C(n,k)^2*C(n,j)*C(3*n-j-k,2*n). (End)
a(n) = [x^n] 1/(1 - x)*( Legendre_P(n,(1 + x)/(1 - x)) )^m at m = 1. At m = 2 we get the Apéry numbers A005259. - Peter Bala, Dec 22 2020
a(n) = (-1)^n*Sum_{j=0..n} (1 - 5*j*H(j) + 5*j*H(n - j))*binomial(n, j)^5, where H(n) denotes the n-th harmonic number, A001008/A002805. (Paule/Schneider). - Peter Luschny, Jul 23 2021
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=(3 + x)*T(x) + (-1 + 22*x + 3*x^2)*T'(x) + x*(-1 + 11*x + x^2)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 3*(1 - 12*x + 14*x^2 + 12*x^3 + x^4);
g3 = 1 - 18*x + 75*x^2 + 75*x^4 + 18*x^5 + x^6;
which determine an elliptic surface with four singular fibers. (End)
Conjecture: a(n)^2 = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A143007(n, k). - Peter Bala, Jul 08 2024
EXAMPLE
G.f. = 1 + 3*x + 19*x^2 + 147*x^3 + 1251*x^4 + 11253*x^5 + 104959*x^6 + ...
MAPLE
with(combinat): seq(add((multinomial(n+k, n-k, k, k))*binomial(n, k), k=0..n), n=0..18); # Zerinvary Lajos, Oct 18 2006
a := n -> binomial(2*n, n)*hypergeom([-n, -n, -n], [1, -2*n], 1):
seq(simplify(a(n)), n=0..20); # Peter Luschny, Feb 10 2018
MATHEMATICA
a[n_] := HypergeometricPFQ[ {n+1, -n, -n}, {1, 1}, 1]; Table[ a[n], {n, 0, 18}] (* Jean-François Alcover, Jan 20 2012, after Vladeta Jovovic *)
Table[Sum[Binomial[n, k]^2 Binomial[n+k, k], {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Aug 25 2019 *)
PROG
(Haskell)
a005258 n = sum [a007318 n k ^ 2 * a007318 (n + k) k | k <- [0..n]]
-- Reinhard Zumkeller, Jan 04 2013
(PARI) {a(n) = if( n<0, -(-1)^n * a(-1-n), sum(k=0, n, binomial(n, k)^2 * binomial(n+k, k)))} /* Michael Somos, Sep 18 2013 */
(GAP) a:=n->Sum([0..n], k->(-1)^(n-k)*Binomial(n, k)*Binomial(n+k, k)^2);;
A005258:=List([0..20], n->a(n));; # Muniru A Asiru, Feb 11 2018
(GAP) List([0..20], n->Sum([0..n], k->Binomial(n, k)^2*Binomial(n+k, k))); # Muniru A Asiru, Jul 29 2018
(Magma) [&+[Binomial(n, k)^2 * Binomial(n+k, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Nov 28 2018
(Python)
def A005258(n):
m, g = 1, 0
for k in range(n+1):
g += m
m *= (n+k+1)*(n-k)**2
m //= (k+1)**3
return g # Chai Wah Wu, Oct 02 2022
CROSSREFS
Cf. A007318.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
Sequence in context: A293527 A080833 A073516 * A131551 A074546 A054316
KEYWORD
nonn,easy,nice
STATUS
approved