|
|
A005258
|
|
Apéry numbers: a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n+k,k).
(Formerly M3057)
|
|
106
|
|
|
1, 3, 19, 147, 1251, 11253, 104959, 1004307, 9793891, 96918753, 970336269, 9807518757, 99912156111, 1024622952993, 10567623342519, 109527728400147, 1140076177397091, 11911997404064793, 124879633548031009, 1313106114867738897, 13844511065506477501
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
Conjecture: For each n=1,2,3,... the polynomial a_n(x) = Sum_{k=0..n} C(n,k)^2*C(n+k,k)*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
Diagonal of rational functions 1/(1 - x - x*y - y*z - x*z - x*y*z), 1/(1 + y + z + x*y + y*z + x*z + x*y*z), 1/(1 - x - y - z + x*y + x*y*z), 1/(1 - x - y - z + y*z + x*z - x*y*z). - Gheorghe Coserea, Jul 07 2018
|
|
REFERENCES
|
Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
S. Melczer, An Invitation to Analytic Combinatorics, 2021; p. 129.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
R. Apéry, Irrationalité de zeta(2) et zeta(3), in Journées Arith. de Luminy. Colloque International du Centre National de la Recherche Scientifique (CNRS) held at the Centre Universitaire de Luminy, Luminy, Jun 20-24, 1978. Astérisque, 61 (1979), 11-13.
|
|
FORMULA
|
D-finite with recurrence: (n+1)^2 * a(n+1) = (11*n^2+11*n+3) * a(n) + n^2 * a(n-1). - Matthijs Coster, Apr 28 2004
Let b(n) be the solution to the above recurrence with b(0) = 0, b(1) = 5. Then the b(n) are rational numbers with b(n)/a(n) -> zeta(2) very rapidly. The identity b(n)*a(n-1) - b(n-1)*a(n) = (-1)^(n-1)*5/n^2 leads to a series acceleration formula: zeta(2) = 5 * Sum_{n >= 1} 1/(n^2*a(n)*a(n-1)) = 5*(1/(1*3) + 1/(2^2*3*19) + 1/(3^2*19*147) + ...). Similar results hold for the constant e: see A143413. - Peter Bala, Aug 14 2008
G.f.: hypergeom([1/12, 5/12],[1], 1728*x^5*(1-11*x-x^2)/(1-12*x+14*x^2+12*x^3+x^4)^3) / (1-12*x+14*x^2+12*x^3+x^4)^(1/4). - Mark van Hoeij, Oct 25 2011
a(n) ~ ((11+5*sqrt(5))/2)^(n+1/2)/(2*Pi*5^(1/4)*n). - Vaclav Kotesovec, Oct 05 2012
1/Pi = 5*(sqrt(47)/7614)*Sum_{n>=0} (-1)^n a(n)*binomial(2n,n)*(682n+71)/15228^n. [Cooper, equation (4)] - Jason Kimberley, Nov 26 2012
a(-1 - n) = (-1)^n * a(n) if n>=0. a(-1 - n) = -(-1)^n * a(n) if n<0. - Michael Somos, Sep 18 2013
0 = a(n)*(a(n+1)*(+4*a(n+2) + 83*a(n+3) - 12*a(n+4)) + a(n+2)*(+32*a(n+2) + 902*a(n+3) - 147*a(n+4)) + a(n+3)*(-56*a(n+3) + 12*a(n+4))) + a(n+1)*(a(n+1)*(+17*a(n+2) + 374*a(n+3) - 56*a(n+4)) + a(n+2)*(+176*a(n+2) + 5324*a(n+3) - 902*a(n+4) + a(n+3)*(-374*a(n+3) + 83*a(n+4))) + a(n+2)*(a(n+2)*(-5*a(n+2) - 176*a(n+3) + 32*a(n+4)) + a(n+3)*(+17*a(n+3) - 4*a(n+4))) for all n in Z. - Michael Somos, Aug 06 2016
a(n) = binomial(2*n, n)*hypergeom([-n, -n, -n],[1, -2*n], 1). - Peter Luschny, Feb 10 2018
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*binomial(n+k,k)^2. - Peter Bala, Feb 10 2018
G.f. y=A(x) satisfies: 0 = x*(x^2 + 11*x - 1)*y'' + (3*x^2 + 22*x - 1)*y' + (x + 3)*y. - Gheorghe Coserea, Jul 01 2018
a(n) = Sum_{0 <= j, k <= n} (-1)^(j+k)*C(n,k)*C(n+k,k)^2*C(n,j)* C(n+k+j,k+j).
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j)*C(n,k)^2*C(n+k,k)*C(n,j)* C(n+k+j,k+j).
a(n) = Sum_{0 <= j, k <= n} (-1)^j*C(n,k)^2*C(n,j)*C(3*n-j-k,2*n). (End)
a(n) = [x^n] 1/(1 - x)*( Legendre_P(n,(1 + x)/(1 - x)) )^m at m = 1. At m = 2 we get the Apéry numbers A005259. - Peter Bala, Dec 22 2020
a(n) = (-1)^n*Sum_{j=0..n} (1 - 5*j*H(j) + 5*j*H(n - j))*binomial(n, j)^5, where H(n) denotes the n-th harmonic number, A001008/A002805. (Paule/Schneider). - Peter Luschny, Jul 23 2021
The g.f. T(x) obeys a period-annihilating ODE:
0=(3 + x)*T(x) + (-1 + 22*x + 3*x^2)*T'(x) + x*(-1 + 11*x + x^2)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 3*(1 - 12*x + 14*x^2 + 12*x^3 + x^4);
g3 = 1 - 18*x + 75*x^2 + 75*x^4 + 18*x^5 + x^6;
which determine an elliptic surface with four singular fibers. (End)
|
|
EXAMPLE
|
G.f. = 1 + 3*x + 19*x^2 + 147*x^3 + 1251*x^4 + 11253*x^5 + 104959*x^6 + ...
|
|
MAPLE
|
with(combinat): seq(add((multinomial(n+k, n-k, k, k))*binomial(n, k), k=0..n), n=0..18); # Zerinvary Lajos, Oct 18 2006
a := n -> binomial(2*n, n)*hypergeom([-n, -n, -n], [1, -2*n], 1):
|
|
MATHEMATICA
|
a[n_] := HypergeometricPFQ[ {n+1, -n, -n}, {1, 1}, 1]; Table[ a[n], {n, 0, 18}] (* Jean-François Alcover, Jan 20 2012, after Vladeta Jovovic *)
Table[Sum[Binomial[n, k]^2 Binomial[n+k, k], {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Aug 25 2019 *)
|
|
PROG
|
(Haskell)
a005258 n = sum [a007318 n k ^ 2 * a007318 (n + k) k | k <- [0..n]]
(PARI) {a(n) = if( n<0, -(-1)^n * a(-1-n), sum(k=0, n, binomial(n, k)^2 * binomial(n+k, k)))} /* Michael Somos, Sep 18 2013 */
(GAP) a:=n->Sum([0..n], k->(-1)^(n-k)*Binomial(n, k)*Binomial(n+k, k)^2);;
(GAP) List([0..20], n->Sum([0..n], k->Binomial(n, k)^2*Binomial(n+k, k))); # Muniru A Asiru, Jul 29 2018
(Magma) [&+[Binomial(n, k)^2 * Binomial(n+k, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Nov 28 2018
(Python)
m, g = 1, 0
for k in range(n+1):
g += m
m *= (n+k+1)*(n-k)**2
m //= (k+1)**3
|
|
CROSSREFS
|
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|