OFFSET
1,2
COMMENTS
In Verrill (1999) section 2.1, t = (eta(q^5) / eta(q))^6 the g.f. of A121591 and f = eta(q^5)^5 / eta(q) the g.f. of A053723.
Apart from signs, this is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..958
Shaun Cooper, Apéry-like sequences defined by four-term recurrence relations, arXiv:2302.00757 [math.NT], 2023. See Table 2 p. 7.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See eta p. 3.
L. O'Brien, Modular forms and two new integer sequences at level 7, Massey University, 2016.
H. Verrill, Some Congruences related to modular forms, Max Planck Institute, 1999.
FORMULA
n^3 * a(n+1) = -(2*n - 1)*(11*n*(n - 1) + 5) * a(n) - 125 * (n - 1)^3 * a(n-1).
a(n*p^k) == (p^3 + Kronecker(p, 5)) * a(n*p^(k-1)) - Kronecker(p, 5) * p^3*a(n*p^(-2)) (mod p^k). [Verrill, 1999]
a(n) = Sum_{k=0..n-1} (-1)^k * binomial(n-1,k)^3 * binomial(5*k-(n-1),3*(n-1)). - Seiichi Manyama, Sep 02 2020
EXAMPLE
G.f. = x - 5*x^2 + 35*x^3 - 275*x^4 + 2275*x^5 - 19255*x^6 + 163925*x^7 + ...
MATHEMATICA
a[n_] := a[n] = Switch[n, 1, 1, 2, -5, _, (1/(n-1)^3) ((1-2(n-1)) (11(n-2) (n-1)+5) a[n-1] - 125 (n-2)^3 a[n-2])];
a /@ Range[21] (* Jean-François Alcover, Jan 13 2020 *)
PROG
(PARI) {a(n) = my(m = n-1); if( n<1, 0, if( n<3, [1, -5][n], -( (5*(m - 1))^3*a(n-2) + (2*m - 1)*(11*(m^2 - m) +5)*a(n-1) )/ m^3))};
(PARI) {a(n) = sum(k=0, n-1, (-1)^k*binomial(n-1, k)^3*binomial(5*k-(n-1), 3*(n-1)))} \\ Seiichi Manyama, Sep 02 2020
CROSSREFS
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
KEYWORD
sign
AUTHOR
Michael Somos, Sep 30 2013
STATUS
approved