login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229111 Expansion of the g.f. of A053723 in powers of the g.f. of A121591. 1
1, -5, 35, -275, 2275, -19255, 163925, -1385725, 11483875, -91781375, 688658785, -4581861025, 22550427925, 8852899375, -2431720493125, 47471706909725, -699843878180125, 9141002535744625, -111232778205154375, 1288777160650004375, -14372445132730778975 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

In Verrill (1999) section 2.1, t = (eta(q^5) / eta(q))^6 the g.f. of A121591 and f = eta(q^5)^5 / eta(q) the g.f. of A053723.

REFERENCES

H. Verrill, Some Congruences related to modular forms, Max Planck Institute, 1999.

LINKS

Michael Somos, Table of n, a(n) for n = 1..21

H. Verrill, Some Congruences related to modular forms

FORMULA

n^3 * a(n+1) = -(2*n - 1)*(11*n*(n - 1) + 5) * a(n) - 125 * (n - 1)^3 * a(n-1).

a(n*p^k) == (p^3 + kronecker(p, 5)) * a(n*p^(k-1)) - kronecker(p, 5) * p^3*a(n*p^(-2)) (mod p^k) [Verrill, 1999]

EXAMPLE

G.f. = x - 5*x^2 + 35*x^3 - 275*x^4 + 2275*x^5 - 19255*x^6 + 163925*x^7 + ...

PROG

(PARI) {a(n) = my(m = n-1); if( n<1, 0, if( n<3, [1, -5][n], -( (5*(m - 1))^3*a(n-2) + (2*m - 1)*(11*(m^2 - m) +5)*a(n-1) )/ m^3))};

CROSSREFS

Cf. A053723, A109064, A121591.

Sequence in context: A180900 A087630 A084135 * A138233 A248053 A002294

Adjacent sequences:  A229108 A229109 A229110 * A229112 A229113 A229114

KEYWORD

sign

AUTHOR

Michael Somos, Sep 30 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 11:07 EST 2016. Contains 278776 sequences.