login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131555
Period 6: repeat [0, 0, 1, 1, 2, 2].
4
0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1
OFFSET
0,5
FORMULA
G.f.: (2*x^2+1)*x^2/((1-x)*(x^2+x+1)*(x^2-x+1)). - R. J. Mathar, Nov 14 2007
a(n) = floor((n mod 6)/2). - Gary Detlefs, Jul 02 2011
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) for n > 4; a(0)=0, a(1)=0, a(2)=1, a(3)=1, a(4)=2. - Harvey P. Dale, Mar 30 2012
a(n) = (3*sin(n*Pi/6) - sqrt(3)*cos(n*Pi/6)) * (2*sin(n*Pi/6) + sin(n*Pi/2))/3. - Wesley Ivan Hurt, Jun 20 2016
a(n) = floor(n/2) mod 3. - Bruno Berselli, Oct 03 2017
a(n) = floor(n/2) - 3*floor(n/6). - Ridouane Oudra, Apr 01 2023
MAPLE
A131555:=n->[0, 0, 1, 1, 2, 2][(n mod 6)+1]: seq(A131555(n), n=0..100); # Wesley Ivan Hurt, Jun 20 2016
MATHEMATICA
PadRight[{}, 120, {0, 0, 1, 1, 2, 2}] (* or *) LinearRecurrence[{1, -1, 1, -1, 1}, {0, 0, 1, 1, 2}, 120] (* Harvey P. Dale, Mar 30 2012 *)
PROG
(PARI) a(n)=n%6\2 \\ Jaume Oliver Lafont, Aug 28 2009
(Magma) &cat [[0, 0, 1, 1, 2, 2]^^20]; // Wesley Ivan Hurt, Jun 20 2016
CROSSREFS
Cf. A105899.
Sequence in context: A227838 A050605 A060571 * A373607 A293209 A318753
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Aug 27 2007
EXTENSIONS
Edited by N. J. A. Sloane, Sep 15 2007
Formula simplified by Bruno Berselli, Sep 27 2010
STATUS
approved