Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 05 2023 18:38:56
%S 3,5,17,65537,1927561217,6015902625062501,12370388895062501,
%T 835920078368222501,6448645485213008897,50973659693056000001,
%U 54332889713542767617,64304984013657011717,112112769248058062501,147337258721536000001
%N Lesser of twin primes p such that sigma((p-1)/2) + tau((p-1)/2) is a prime.
%C Lesser of twin primes p such that A000203((p-1)/2) + A000005((p-1)/2) is a prime q.
%C The first 4 terms are Fermat primes from A019434.
%C Corresponding values of primes q: 2, 5, 19, 65551, 2248681529, ...
%C Subsequence of A272060 and A272061.
%C Lesser of twin primes of the form 2*m+1 with m a term of A064205.
%C There are no other terms <= 10^14.
%C All the terms above 3 are in A145824. - _Amiram Eldar_, Jan 05 2023
%e 17 and 19 are twin primes; sigma((17-1)/2) + tau((17-1)/2) = sigma(8) + tau(8) = 15 + 4 = 19; 19 is prime, so 17 is in the sequence.
%t Join[{3}, Select[4*Range[25000]^2 + 1, PrimeQ[#] && PrimeQ[# + 2] && PrimeQ[DivisorSigma[1, (# - 1)/2] + DivisorSigma[0, (# - 1)/2]] &]]
%t (* or *)
%t A272061 = Cases[Import["https://oeis.org/A272061/b272061.txt", "Table"], {_, _}][[;; , 2]]; Select[A272061, PrimeQ[# + 2] &] (* _Amiram Eldar_, Jan 05 2023 *)
%o (Magma) [n: n in [3..10^7] | IsPrime(n) and IsPrime(n+2) and IsPrime(&+Divisors((n-1) div 2) + #Divisors((n-1) div 2))]
%o (PARI) isok(p) = if (isprime(p) && isprime(p+2), my(f=factor((p-1)/2)); isprime(sigma(f)+numdiv(f))); \\ _Michel Marcus_, Nov 23 2022
%Y Intersection of A001359 and A272061.
%Y Cf. A000005 (tau), A000203 (sigma), A019434, A064205, A145824, A272060.
%K nonn,more
%O 1,1
%A _Jaroslav Krizek_, Nov 10 2022