OFFSET
1,5
COMMENTS
This is the "General Ruler Sequence Base 4 Focused at 1" of Webster (2015).
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..10000
Richard C. Webster, One Sequence to Rule Them All: The Ruler Sequence and Its Relation to Odd Perfect Numbers and Multiplicative Order, MS Thesis, California State Polytechnic University, Pomona, CA, 2015.
FORMULA
Recurrence: a(1)=1; thereafter a(4*n+1) = a(n)+1, a(4*n+j) = 0 for j = 0,2,3. G.f. g(x) = Sum_{k>=0} k * x^((4^k-1)/3) * (1 + x^(2*4^k) + x^(3*4^k))/(1 - x^(4*4^k)) satisfies g(x) = x*g(x^4) + x/(1-x^4). - Robert Israel, Jun 08 2015
EXAMPLE
1 = 0*4+1, so a(1)=1.
7 = 1*4+3, so a(7)=0.
21 = 0*4^3+1*4^2+1*4+1, so a(21)=3.
523 base 10 is 20023 in base 4, so a(523)=0.
1365 base 10 is 111111 in base 4, so a(1365)=6.
MAPLE
f:= proc(n)
if n mod 4 = 1 then procname((n-1)/4) + 1 else 0 fi
end proc:
map(f, [$1..1000]); # Robert Israel, Jun 08 2015
PROG
(PARI) a(n) = {v = Vecrev(digits(n, 4)); for (i=1, #v, if (v[i] != 1, return (i-1)); ); return(#v); }
(Haskell)
a258059 = f 0 . a030386_row where
f i [] = i
f i (t:ts) = if t == 1 then f (i + 1) ts else i
-- Reinhard Zumkeller, Nov 08 2015
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Richard C. Webster, May 17 2015
EXTENSIONS
Edited by N. J. A. Sloane, Oct 31 2015 and Nov 06 2015.
STATUS
approved