login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258060
Squares, without multiplicity, that are the concatenation of two integers (without leading zeros) the product of which is also a square.
1
49, 169, 361, 1225, 1444, 1681, 3249, 4225, 4900, 15625, 16900, 36100, 42025, 49729, 64009, 81225, 93025, 122500, 142129, 144400, 168100, 225625, 237169, 324900, 414736, 422500, 490000, 519841, 819025, 950625, 970225, 1024144, 1442401, 1562500, 1600225, 1690000, 1692601, 2079364, 2304324
OFFSET
1,1
COMMENTS
Squares that can be split up in more than one way, e.g., 4950625 with sqrt(4 * 950625) = 1950 and sqrt(49 * 50625) = 1575, appear only once.
Squares that are members of this sequence in more than one way: 4950625, 495062500, 49506250000, 4950625000000, ..., . - Robert G. Wilson v, Aug 14 2015
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..1386 (first 200 terms from Reiner Moewald)
EXAMPLE
169 = 13^2 can be split up into 16 and 9 and 16*9 = 144, a square.
MAPLE
p:= proc(k, n) local t; t:= n mod 10^k; t >= 10^(k-1) and issqr(t*(n-t)/10^k) end proc:
filter:= n -> ormap(p, [$1..ilog10(n)], n):
select(filter, [seq(i^2, i=1..10^4)]); # Robert Israel, Sep 22 2015
MATHEMATICA
f[n_] := Block[{idn = IntegerDigits@ n, c = 0, k = 1, lmt = Floor[1 + Log10@ n]}, While[k < lmt, m = Mod[n, 10^(lmt - k)]; If[ IntegerQ@ Sqrt[ FromDigits[ Take[idn, {1, k}]] m] && m > 0 && IntegerDigits[m] == Take[idn, {k + 1, -1}], c++]; k++]; c]; Select[ Range[1700]^2, f@# > 0 &] (* Robert G. Wilson v, Aug 13 2015 *)
PROG
(Python)
import math
list =[]
for i in range(1, 100000):
...a = i*i
...b = str(a)
...l = len(b)
...for j in range(1, l):
......a_1 = b[:j]
......a_2 = b[j:]
......c = int(a_1)* int(a_2)
......sqrt_c = int(math.sqrt(int(c)))
......if (sqrt_c * sqrt_c == c) and (int(a_2[:1]) > 0):
.........if not a in list:
............list.append(a)
.........list.append(a)
print(list)
(PARI) isok(n) = {if (issquare(n), len = #Str(n); for (k=1, len-1, na = n\10^k; nb = n%10^k; if (na && nb && (eval(Str(na, nb))==n) && issquare(na*nb), return (1)); ); ); } \\ Michel Marcus, Oct 09 2015
CROSSREFS
Subsequence of A039686.
Sequence in context: A016922 A277793 A147608 * A039686 A038628 A244695
KEYWORD
nonn,base
AUTHOR
Reiner Moewald, Jul 26 2015
STATUS
approved