login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the sum of the unitary divisors of n that are squares.
6

%I #20 Sep 09 2023 06:49:35

%S 1,1,1,5,1,1,1,1,10,1,1,5,1,1,1,17,1,10,1,5,1,1,1,1,26,1,1,5,1,1,1,1,

%T 1,1,1,50,1,1,1,1,1,1,1,5,10,1,1,17,50,26,1,5,1,1,1,1,1,1,1,5,1,1,10,

%U 65,1,1,1,5,1,1,1,10,1,1,26,5,1,1,1,17,82,1

%N a(n) is the sum of the unitary divisors of n that are squares.

%C The number of unitary divisors of n that are squares is A056624(n).

%H Amiram Eldar, <a href="/A358347/b358347.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) >= 1 with equality if and only if n is an exponentially odd number (A268335).

%F Multiplicative with a(p^e) = p^e + 1 if e is even, and 1 otherwise.

%F a(n) = A034448(n)/A358346(n).

%F Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)/(3*zeta(5/2)) = 0.6491241554... .

%F Dirichlet g.f.: zeta(s)*zeta(2*s-2)/zeta(3*s-2). - _Amiram Eldar_, Jan 29 2023

%F a(n) = A034448(A350388(n)). - _Amiram Eldar_, Sep 09 2023

%t f[p_, e_] := If[OddQ[e], 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, 1, f[i,1]^f[i,2] + 1));}

%Y Cf. A056624, A077610, A078434, A247041, A268335, A350388, A351568.

%Y Similar sequences: A033634, A034448, A035316, A358346.

%K nonn,easy,mult

%O 1,4

%A _Amiram Eldar_, Nov 11 2022