The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A350388 a(n) is the largest unitary divisor of n that is a square. 21
 1, 1, 1, 4, 1, 1, 1, 1, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 1, 25, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1, 1, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS First differs from A056623 at n = 32. LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 FORMULA Multiplicative with a(p^e) = p^e if e is even and 1 otherwise. a(n) = n/A350389(n). a(n) = A071974(n)^2. a(n) = A008833(n) if and only if n is in A335275. A001222(a(n)) = A350386(n). a(n) = 1 if and only if n is an exponentially odd number (A268335). a(n) = n if and only if n is a positive square (A000290 \ {0}). Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (1/3) * Product_{p prime} (1 + sqrt(p)/(1 + p + p^2)) = 0.59317173657411718128... [updated Oct 16 2022] Dirichlet g.f.: zeta(2*s-2) * zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s) - 1/p^(3*s-2)). - Amiram Eldar, Oct 01 2023 MATHEMATICA f[p_, e_] := If[EvenQ[e], p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] PROG (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, 1, f[i, 1]^f[i, 2])); } \\ Amiram Eldar, Oct 01 2023 CROSSREFS Cf. A000290, A001222, A008833, A056623, A071974, A268335, A335275, A350386, A350389. Sequence in context: A119350 A016528 A368884 * A056623 A038025 A079982 Adjacent sequences: A350385 A350386 A350387 * A350389 A350390 A350391 KEYWORD nonn,easy,mult AUTHOR Amiram Eldar, Dec 28 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 13:04 EDT 2024. Contains 372692 sequences. (Running on oeis4.)