login
a(n) is the largest unitary divisor of n that is a square.
31

%I #18 Oct 01 2023 02:38:06

%S 1,1,1,4,1,1,1,1,9,1,1,4,1,1,1,16,1,9,1,4,1,1,1,1,25,1,1,4,1,1,1,1,1,

%T 1,1,36,1,1,1,1,1,1,1,4,9,1,1,16,49,25,1,4,1,1,1,1,1,1,1,4,1,1,9,64,1,

%U 1,1,4,1,1,1,9,1,1,25,4,1,1,1,16,81,1,1,4

%N a(n) is the largest unitary divisor of n that is a square.

%C First differs from A056623 at n = 32.

%H Amiram Eldar, <a href="/A350388/b350388.txt">Table of n, a(n) for n = 1..10000</a>

%F Multiplicative with a(p^e) = p^e if e is even and 1 otherwise.

%F a(n) = n/A350389(n).

%F a(n) = A071974(n)^2.

%F a(n) = A008833(n) if and only if n is in A335275.

%F A001222(a(n)) = A350386(n).

%F a(n) = 1 if and only if n is an exponentially odd number (A268335).

%F a(n) = n if and only if n is a positive square (A000290 \ {0}).

%F Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (1/3) * Product_{p prime} (1 + sqrt(p)/(1 + p + p^2)) = 0.59317173657411718128... [updated Oct 16 2022]

%F Dirichlet g.f.: zeta(2*s-2) * zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s) - 1/p^(3*s-2)). - _Amiram Eldar_, Oct 01 2023

%t f[p_, e_] := If[EvenQ[e], p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, 1, f[i,1]^f[i,2]));} \\ _Amiram Eldar_, Oct 01 2023

%Y Cf. A000290, A001222, A008833, A056623, A071974, A268335, A335275, A350386, A350389.

%K nonn,easy,mult

%O 1,4

%A _Amiram Eldar_, Dec 28 2021