login
A350386
a(n) is the sum of the even exponents in the prime factorization of n.
11
0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 2, 4, 0, 0, 0, 0, 0
OFFSET
1,4
COMMENTS
a(n) is the number of prime divisors of n, counted with multiplicity, with an even exponent in the prime factorization of n.
All the terms are even by definition.
LINKS
FORMULA
Additive with a(p^e) = e if e is even and 0 otherwise.
a(n) = A001222(A350388(n)).
a(n) = 0 if and only if n is an exponentially odd number (A268335).
a(n) = A001222(n) - A350387(n).
a(n) = A001222(n) if and only if n is a positive square (A000290 \ {0}).
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} 2*p/((p-1)*(p+1)^2) = 0.7961706018...
MATHEMATICA
f[p_, e_] := If[EvenQ[e], e, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(Python)
from sympy import factorint
def a(n): return sum(e for e in factorint(n).values() if e%2 == 0)
print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Dec 28 2021
(PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, if (!(f[k, 2] % 2), f[k, 2])); \\ Michel Marcus, Dec 29 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Dec 28 2021
STATUS
approved