login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350383
a(n) = [x^n] 1/(1 + x + x^2)^n.
4
1, -1, 1, 2, -15, 49, -98, 48, 561, -2860, 8151, -12948, -9282, 149226, -594320, 1428952, -1448655, -5538975, 37450900, -122995950, 239589735, -37528755, -1886983020, 8939152560, -24579514050, 35197176924, 51580335366, -541312482256, 2033695030128, -4624358661240
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1+k,k) * binomial(n,3*k).
Recurrence: 3*(n-1)*n*(4*n - 7)*a(n) = -2*(n-1)*(28*n^2 - 63*n + 27)*a(n-1) - 3*(3*n - 5)*(3*n - 4)*(4*n - 3)*a(n-2). - Vaclav Kotesovec, Mar 18 2023
From Peter Bala, Apr 15 2023: (Start)
a(n) = (-1)^n*hypergeom([-n/3, 1/3 - n/3, 2/3 - n/3, n], [1/3, 2/3, 1], 1).
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for positive integers n and r and all primes p >= 5. Cf. A228960.
More generally, let k be a positive integer, m an integer and let f(x) = g(x)/h(x), where g(x) and h(x) are both finite products of cyclotomic polynomials. Then we conjecture that the same supercongruences hold, except for a finite number of primes p depending on f(x), for the sequence {a_(k,m,f)(n): n >= 0} defined by a_(k,m,f)(n) = [x^(k*n)] f(x)^(m*n). (End)
MAPLE
a := n -> (-1)^n*hypergeom([-n/3, 1/3 - n/3, 2/3 - n/3, n], [1/3, 2/3, 1], 1): seq(simplify(a(n)), n = 0..30); # Peter Bala, Apr 17 2023
MATHEMATICA
a[n_] := Coefficient[Series[1/(1 + x + x^2)^n, {x, 0, n}], x, n]; Array[a, 30, 0] (* Amiram Eldar, Dec 29 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1+k, k)*binomial(n, 3*k));
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Dec 29 2021
STATUS
approved