login
A350383
a(n) = [x^n] 1/(1 + x + x^2)^n.
4
1, -1, 1, 2, -15, 49, -98, 48, 561, -2860, 8151, -12948, -9282, 149226, -594320, 1428952, -1448655, -5538975, 37450900, -122995950, 239589735, -37528755, -1886983020, 8939152560, -24579514050, 35197176924, 51580335366, -541312482256, 2033695030128, -4624358661240
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1+k,k) * binomial(n,3*k).
Recurrence: 3*(n-1)*n*(4*n - 7)*a(n) = -2*(n-1)*(28*n^2 - 63*n + 27)*a(n-1) - 3*(3*n - 5)*(3*n - 4)*(4*n - 3)*a(n-2). - Vaclav Kotesovec, Mar 18 2023
From Peter Bala, Apr 15 2023: (Start)
a(n) = (-1)^n*hypergeom([-n/3, 1/3 - n/3, 2/3 - n/3, n], [1/3, 2/3, 1], 1).
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for positive integers n and r and all primes p >= 5. Cf. A228960.
More generally, let k be a positive integer, m an integer and let f(x) = g(x)/h(x), where g(x) and h(x) are both finite products of cyclotomic polynomials. Then we conjecture that the same supercongruences hold, except for a finite number of primes p depending on f(x), for the sequence {a_(k,m,f)(n): n >= 0} defined by a_(k,m,f)(n) = [x^(k*n)] f(x)^(m*n). (End)
From Peter Bala, Mar 11 2025: (Start)
G.f.: A(x) = 1 + x*d/dx(log(G(x)/x)), where G(x) = x - x^2 + x^3 - 4*x^5 + 14*x^6 - 30*x^7 + ... is the g.f. of A103779.
The following formulas hold for n >= 1:
a(n) = [x^n] T(2*n, (1 - x)/2), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
a(n) = Sum_{k = 0..n} (-1)^(n+k) * n/(2*n-k) * binomial(2*n-k, k)*binomial(2*n-2*k, n).
a(n) = (1/2)*(-1)^n*binomial(2*n, n)*hypergeom([-n/2, (-n+1)/2], [-2*n+1], 4). Cf. A213684. (End)
MAPLE
a := n -> (-1)^n*hypergeom([-n/3, 1/3 - n/3, 2/3 - n/3, n], [1/3, 2/3, 1], 1): seq(simplify(a(n)), n = 0..30); # Peter Bala, Apr 17 2023
MATHEMATICA
a[n_] := Coefficient[Series[1/(1 + x + x^2)^n, {x, 0, n}], x, n]; Array[a, 30, 0] (* Amiram Eldar, Dec 29 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1+k, k)*binomial(n, 3*k));
KEYWORD
sign,easy,changed
AUTHOR
Seiichi Manyama, Dec 29 2021
STATUS
approved