login
A165817
Number of compositions (= ordered integer partitions) of n into 2n parts.
23
1, 2, 10, 56, 330, 2002, 12376, 77520, 490314, 3124550, 20030010, 129024480, 834451800, 5414950296, 35240152720, 229911617056, 1503232609098, 9847379391150, 64617565719070, 424655979547800, 2794563003870330, 18412956934908690, 121455445321173600
OFFSET
0,2
COMMENTS
Number of ways to put n indistinguishable balls into 2*n distinguishable boxes.
Number of rankings of n unlabeled elements for 2*n levels.
LINKS
W. Mlotkowski and K. A. Penson, Probability distributions with binomial moments, arXiv preprint arXiv:1309.0595 [math.PR], 2013.
FORMULA
a(n) = 9*sqrt(3)*GAMMA(n+5/3)*GAMMA(n+4/3)*27^n/(Pi*GAMMA(2*n+3)).
a(n) = binomial(3*n-1, n);
Let denote P(n) = the number of integer partitions of n,
p(i) = the number of parts of the i-th partition of n,
d(i) = the number of different parts of the i-th partition of n,
m(i,j) = multiplicity of the j-th part of the i-th partition of n.
Then one has:
a(n) = Sum_{i=1..P(n)} (2*n)!/((2*n-p(i))!*(Prod_{j=1..d(i)} m(i,j)!)).
a(n) = rf(2*n,n)/ff(n,n), where rf is the rising factorial and ff the falling factorial. - Peter Luschny, Nov 21 2012
G.f.: A(x) = x*B'(x)/B(x), where B(x) satisfies B(x)^3-2*B(x)^2+B(x)=x, B(x)=A006013(x). - Vladimir Kruchinin, Feb 06 2013
G.f.: A(x) = sqrt(3*x)*cot(asin((3^(3/2)*sqrt(x))/2)/3)/(sqrt(4-27*x)). - Vladimir Kruchinin, Mar 18 2015
a(n) = Sum_{k=0..n} binomial(n-1,n-k)*binomial(2*n,k). - Vladimir Kruchinin, Oct 06 2015
From Peter Bala, Nov 04 2015: (Start)
The o.g.f. equals f(x)/g(x), where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A045721 (k = 1), A025174 (k = 2), A004319 (k = 3), A236194 (k = 4), A013698 (k = 5) and A117671 (k = -2). (End)
a(n) = [x^n] 1/(1 - x)^(2*n). - Ilya Gutkovskiy, Oct 03 2017
a(n) = A059481(2n,n). - Alois P. Heinz, Oct 17 2022
From Peter Bala, Feb 14 2024: (Start)
a(n) = (-1)^n * binomial(-2*n, n).
a(n) = hypergeom([1 - 2*n, -n], [1], 1).
The g.f. A(x) satisfies A(x/(1 + x)^3) = 1/(1 - 2*x).
Sum_{n >= 0} a(n)/9^n = (1 + 4*cos(Pi/9))/3.
Sum_{n >= 0} a(n)/27^n = (3 + 4*sqrt(3)*cos(Pi/18))/9.
Sum_{n >= 0} a(n)*(2/27)^n = (2 + sqrt(3))/3. (End)
From Peter Bala, Sep 16 2024: (Start)
a(n) = Sum_{k = 0..n} binomial(n+k-1, k)*binomial(2*n-k-1, n-k).
More generally, a(n) = Sum_{k = 0..n} (-1)^k*binomial(x*n, k)*binomial((x+3)*n-k-1, n-k) for arbitrary x.
a(n) = (2/3) * Sum_{k = 0..n} (-1)^k*binomial(x*n+k-1, k)*binomial((x+3)*n, n-k) for n >= 1 and arbitrary x. (End)
EXAMPLE
Let [1,1,1], [1,2] and [3] be the integer partitions of n=3.
Then [0,0,0,1,1,1], [0,0,0,0,1,2] and [0,0,0,0,0,3] are the corresponding partitions occupying 2*n = 6 positions.
We have to take into account the multiplicities of the parts including the multiplicities of the zeros.
Then
[0,0,0,1,1,1] --> 6!/(3!*3!) = 20
[0,0,0,0,1,2] --> 6!/(4!*1!*1!) = 30
[0,0,0,0,0,3] --> 6!/(5!*1!) = 6
and thus a(3) = 20+30+6=56.
a(2)=10, since we have 10 ordered partitions of n=2 where the parts are distributed over 2*n=4 boxes:
[0, 0, 0, 2]
[0, 0, 1, 1]
[0, 0, 2, 0]
[0, 1, 0, 1]
[0, 1, 1, 0]
[0, 2, 0, 0]
[1, 0, 0, 1]
[1, 0, 1, 0]
[1, 1, 0, 0]
[2, 0, 0, 0].
MAPLE
for n from 0 to 16 do
a[n] := 9*sqrt(3)*GAMMA(n+5/3)*GAMMA(n+4/3)*27^n/(Pi*GAMMA(2*n+3))
end do;
MATHEMATICA
Table[Binomial[3 n - 1, n], {n, 0, 20}] (* Vincenzo Librandi, Aug 07 2014 *)
PROG
(Sage)
def A165817(n):
return rising_factorial(2*n, n)/falling_factorial(n, n)
[A165817(n) for n in (0..22)] # Peter Luschny, Nov 21 2012
(Magma) [Binomial(3*n-1, n): n in [0..30]]; // Vincenzo Librandi, Aug 07 2014
(PARI) vector(30, n, n--; binomial(3*n-1, n)) \\ Altug Alkan, Nov 04 2015
(Python)
from math import comb
def A165817(n): return comb(3*n-1, n) if n else 1 # Chai Wah Wu, Oct 11 2023
KEYWORD
nonn,easy
AUTHOR
Thomas Wieder, Sep 29 2009
EXTENSIONS
a(0) prepended and more terms from Alois P. Heinz, Apr 04 2012
STATUS
approved