login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243644
Expansion of x*log'(((1-sqrt(1-4*x))/2-sqrt(((-sqrt(1-4*x)-11)*(1-sqrt(1-4*x)))/4+1)+1)/4).
2
1, 2, 10, 56, 334, 2072, 13192, 85500, 561190, 3717740, 24802540, 166376256, 1120966084, 7579795628, 51408124372, 349559178116, 2382166791750, 16265392884140, 111249729804220, 762067793838960, 5227330405163524
OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..120 from Robert Israel)
FORMULA
a(n) = Sum_{k=0..n} binomial(n+(k)-1,(k))*binomial(3*n-1,n-4*k).
A(x) = x*log'(x*C(x)*S(x*C(x))), where C(x) is g.f. A000108, S(x) is g.f. A001003.
a(n) ~ sqrt((6+2*sqrt(2))/7) * (7+5*sqrt(2))^n / (sqrt(Pi*n) * 2^(n+5/4)). - Vaclav Kotesovec, Jun 15 2014
a(n) = [x^n] ( (1 - x)^2/((1 - x)^4 - x^4) )^n. O.g.f. A(x) is essentially obtained by logarithmically differentiating the o.g.f of A243632. - Peter Bala, Oct 02 2015
MATHEMATICA
CoefficientList[Series[-((2*(5 + Sqrt[1-4*x] + Sqrt[-6+10*Sqrt[1-4*x] - 4*x]) * x)/((-3 + Sqrt[1-4*x] + Sqrt[-6 + 10*Sqrt[1-4*x] - 4*x]) * Sqrt[1-4*x]*Sqrt[-6 + 10*Sqrt[1-4*x] - 4*x])), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 15 2014 *)
Table[Sum[Binomial[n + k - 1, k]*Binomial[3*n - 1, n - 4*k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Feb 14 2017 *)
PROG
(Maxima)
a(n):=sum(binomial(n+(k)-1, (k))*binomial(3*n-1, n-4*k), k, 0, n);
(PARI) a(n) = sum(k=0, n, binomial(n+k-1, (k))*binomial(3*n-1, n-4*k));
vector(20, n, a(n-1)) \\ Altug Alkan, Oct 02 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Jun 08 2014
STATUS
approved