login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243644 Expansion of x*log'(((1-sqrt(1-4*x))/2-sqrt(((-sqrt(1-4*x)-11)*(1-sqrt(1-4*x)))/4+1)+1)/4). 2
1, 2, 10, 56, 334, 2072, 13192, 85500, 561190, 3717740, 24802540, 166376256, 1120966084, 7579795628, 51408124372, 349559178116, 2382166791750, 16265392884140, 111249729804220, 762067793838960, 5227330405163524 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..120 from Robert Israel)

FORMULA

a(n) = Sum_{k=0..n} binomial(n+(k)-1,(k))*binomial(3*n-1,n-4*k).

A(x) = x*log'(x*C(x)*S(x*C(x))), where C(x) is g.f. A000108, S(x) is g.f. A001003.

a(n) ~ sqrt((6+2*sqrt(2))/7) * (7+5*sqrt(2))^n / (sqrt(Pi*n) * 2^(n+5/4)). - Vaclav Kotesovec, Jun 15 2014

a(n) = [x^n] ( (1 - x)^2/((1 - x)^4 - x^4) )^n. O.g.f. A(x) is essentially obtained by logarithmically differentiating the o.g.f of A243632. - Peter Bala, Oct 02 2015

MATHEMATICA

CoefficientList[Series[-((2*(5 + Sqrt[1-4*x] + Sqrt[-6+10*Sqrt[1-4*x] - 4*x]) * x)/((-3 + Sqrt[1-4*x] + Sqrt[-6 + 10*Sqrt[1-4*x] - 4*x]) * Sqrt[1-4*x]*Sqrt[-6 + 10*Sqrt[1-4*x] - 4*x])), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 15 2014 *)

Table[Sum[Binomial[n + k - 1, k]*Binomial[3*n - 1, n - 4*k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Feb 14 2017 *)

PROG

(Maxima)

a(n):=sum(binomial(n+(k)-1, (k))*binomial(3*n-1, n-4*k), k, 0, n);

(PARI) a(n) = sum(k=0, n, binomial(n+k-1, (k))*binomial(3*n-1, n-4*k));

vector(20, n, a(n-1)) \\ Altug Alkan, Oct 02 2015

CROSSREFS

Cf. A000108, A001003, A243632.

Sequence in context: A108490 A323935 A165817 * A000172 A097971 A191277

Adjacent sequences:  A243641 A243642 A243643 * A243645 A243646 A243647

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Jun 08 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 23:46 EDT 2021. Contains 343143 sequences. (Running on oeis4.)