login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243642
Expansion of -(4*x)/((1-sqrt(1-4*x))/2-sqrt(-3*(1-sqrt(1-4*x))+(1-sqrt(1-4*x))^2/4+1)+1).
1
-1, 2, 3, 10, 43, 210, 1106, 6120, 35059, 206050, 1235130, 7520860, 46385822, 289160620, 1818956184, 11531388580, 73599630147, 472547337650, 3049962382850, 19777692906300, 128789274380746, 841837751136060, 5521644155232972, 36330127521846080, 239722100410099118
OFFSET
0,2
LINKS
FORMULA
a(n) = (Sum_{k=0..(n-1)} binomial(3*n-3,n-4*k)*binomial(n+k-2,k))/(n-1), n>1, a(0) = -1, a(1)=2.
A(x) = -1/C(x)*S(x*C(x)), where C(x) is g.f. A000108, S(x) is g.f. A001003.
a(n) ~ sqrt((27-19*sqrt(2))/7) * (7+5*sqrt(2))^n / (sqrt(Pi) * n^(3/2) * 2^(n-3/4)). - Vaclav Kotesovec, Jun 15 2014
Conjecture D-finite with recurrence: +16*n*(n-1)*(n-2)*a(n) -4*(n-1)*(n-2)*(43*n-54)*a(n-1) +2*(n-2)*(52*n^2+695*n-2439)*a(n-2) +(3479*n^3-42714*n^2+169789*n-219234)*a(n-3) +2*(-4633*n^3+64020*n^2-293825*n+447594)*a(n-4) +4*(2*n-11)*(296*n^2-3643*n+11187)*a(n-5) +24*(n-7)*(2*n-11)*(2*n-13)*a(n-6)=0. - R. J. Mathar, Jan 25 2020
MATHEMATICA
CoefficientList[Series[8*x/(-3+Sqrt[1-4*x] + Sqrt[-6+10*Sqrt[1-4*x] - 4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 15 2014 *)
PROG
(Maxima)
a(n):=if n=0 then -1 else if n=1 then 2 else sum(binomial(3*n-3, n-4*k)*binomial(n+k-2, k), k, 0, n-1)/(n-1);
(PARI) my(x='x+O('x^50)); Vec(-(4*x)/((1-sqrt(1-4*x))/2-sqrt(-3*(1-sqrt(1-4*x))+(1-sqrt(1-4*x))^2/4+1)+1)) \\ G. C. Greubel, Jun 02 2017
CROSSREFS
Sequence in context: A037390 A024484 A007226 * A032204 A106643 A020116
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 08 2014
STATUS
approved