login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243645
Number of ways two L-tiles can be placed on an n X n square.
3
0, 0, 0, 1, 20, 87, 244, 545, 1056, 1855, 3032, 4689, 6940, 9911, 13740, 18577, 24584, 31935, 40816, 51425, 63972, 78679, 95780, 115521, 138160, 163967, 193224, 226225, 263276, 304695, 350812, 401969, 458520, 520831, 589280, 664257, 746164, 835415, 932436
OFFSET
0,5
COMMENTS
This sequence also represents the number of edges added to G so that it is complete, where G is a graph of (n-1)^2 nodes arranged in a rhombus and embedded in the hexagonal lattice. G begins with A045944(n-2) edges and a(n) edges are added to form a complete graph. - John Tyler Rascoe, Sep 24 2022
FORMULA
G.f.: x^3*(x^3+3*x^2-15*x-1) / (x-1)^5.
a(n) = (n^4-4*n^3-n^2+18*n-16)/2 for n>=2, a(n) = 0 for n<2.
a(n) = A083374(n-1) - A045944(n-2) for n>=2. - John Tyler Rascoe, Sep 24 2022
EXAMPLE
a(3) = 1:
._____.
|_| |_|
| |___|
|___|_| .
MAPLE
a:= n-> `if`(n<2, 0, ((((n-4)*n-1)*n+18)*n-16)/2):
seq(a(n), n=0..50);
MATHEMATICA
CoefficientList[Series[x^3 (x^3+3x^2-15x-1)/(x-1)^5, {x, 0, 40}], x] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 1, 20, 87, 244}, 40] (* Harvey P. Dale, Mar 06 2016 *)
CROSSREFS
Column k=2 of A243608.
Sequence in context: A211158 A154077 A027849 * A219824 A339343 A306987
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Jun 08 2014
STATUS
approved