login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243608
Number T(n,k) of ways k L-tiles can be placed on an n X n square; triangle T(n,k), n>=0, 0<=k<=A229093(n), read by rows.
6
1, 1, 1, 1, 1, 4, 1, 1, 9, 20, 11, 1, 1, 16, 87, 196, 176, 46, 2, 1, 25, 244, 1195, 3145, 4431, 3161, 1007, 111, 2, 1, 36, 545, 4544, 22969, 73098, 147502, 185744, 140288, 59140, 12313, 1046, 26, 1, 49, 1056, 13215, 106819, 587149, 2251309, 6082000, 11562155
OFFSET
0,6
COMMENTS
An L-tile is a 2 X 2 square with the upper right 1 X 1 subsquare removed and no rotations are allowed.
LINKS
EXAMPLE
T(3,1) = 4:
._____. ._____. ._____. ._____.
| |_|_| |_|_|_| |_| |_| |_|_|_|
|___|_| | |_|_| |_|___| |_| |_|
|_|_|_| |___|_| |_|_|_| |_|___|
T(4,4) = 1:
._______.
| |_| |_|
|___|___|
| |_| |_|
|___|___|
T(5,6) = 2:
._________. ._________.
| |_|_| |_| |_| |_| |_|
|___| |___| | |___|___|
|_| |___|_| |___|_| |_|
| |___| |_| | |_| |___|
|___|_|___| |___|___|_| .
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 4, 1;
1, 9, 20, 11, 1;
1, 16, 87, 196, 176, 46, 2;
1, 25, 244, 1195, 3145, 4431, 3161, 1007, 111, 2;
MAPLE
b:= proc(n, l) option remember; local k;
if n<2 then 1
elif min(l[])>0 then b(n-1, map(h->h-1, l))
else for k while l[k]>0 do od; expand(
b(n, subsop(k=1, l))+ `if`(n>1 and k<nops(l)
and l[k+1]=0, x*b(n, subsop(k=2, k+1=1, l)), 0))
fi
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$n])):
seq(T(n), n=0..10);
MATHEMATICA
b[n_, l_] := b[n, l] = Module[{k}, Which[n<2, 1, Min[l]>0, b[n-1, l-1], True, For[k = 1, l[[k]] > 0, k++]; Expand[b[n, ReplacePart[l, k -> 1]] + If[n>1 && k<Length[l] && l[[k+1]]==0, x*b[n, ReplacePart[l, {k -> 2, k+1 -> 1}]], 0]]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, Table[0, {n}]]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 12 2017, translated from Maple *)
CROSSREFS
Columns k=0-6 give: A000012, A000290(n-1) for n>0, A243645, A243646, A243647, A243648, A243649.
Row sums give main diagonal of A226444 or A066864(n-1) for n>0.
Sequence in context: A126065 A299427 A126062 * A219207 A157108 A376553
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Jun 07 2014
STATUS
approved