OFFSET
1,4
COMMENTS
Let F = A000045 (the Fibonacci numbers). Row n of the array to be generated consists of F(n-1) nonnegative rationals together with F(n-1) negative rationals. The nonnegatives, for n >=3, are x + 1 from the F(n-2) nonnegative numbers x in row n-1, together with x/(x + 1) from the F(n-3) nonnegative numbers x in row n-2. The negatives in row n are the negative reciprocals of the positives in row n.
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..3000
EXAMPLE
First 6 rows of the array of all rationals:
0/1
-1/1 .. 1/1
-1/2 .. 2/1
-2/1 .. -1/3 .. 1/2 ... 3/1
-3/2 .. -2/3 .. -1/4 .. 2/3 ... 3/2 ... 4/1
-3/1 .. -4/3 .. -3/5 .. -2/5 .. -1/5 .. 1/3 . 3/4 . 5/3 . 5/2 . 5/1
The denominators, by rows: 1,1,1,2,1,1,3,2,1,2,3,4,3,2,1,1,3,5,5,3,4,3,2,1,...
MATHEMATICA
z = 12; g[1] = {0}; f1[x_] := x + 1; f2[x_] := -1/(x + 1); h[1] = g[1];
b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]];
h[n_] := h[n] = Union[h[n - 1], g[n - 1]];
g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]
u = Table[g[n], {n, 1, z}]
v = Table[Reverse[Drop[g[n], Fibonacci[n - 1]]], {n, 2, z}]
Delete[Flatten[Denominator[u]], 6] (* A243611 *)
Delete[Flatten[Numerator[u]], 6] (* A243612 *)
Delete[Flatten[Denominator[v]], 2] (* A243613 *)
Delete[Flatten[Numerator[v]], 2] (* A243614 *)
ListPlot[g[20]]
CROSSREFS
KEYWORD
nonn,easy,tabf,frac
AUTHOR
Clark Kimberling, Jun 08 2014
STATUS
approved