OFFSET
0,5
COMMENTS
Maximal term in row n is asymptotically in position k = r*n, where r = A220359 = 0.70350607643... is a root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Nov 15 2012
LINKS
Paul D. Hanna, Rows n = 0..45, flattened.
FORMULA
Row sums equal A184731.
EXAMPLE
Triangle of coefficients C(n,k)^(k+1) begins:
1;
1, 1;
1, 4, 1;
1, 9, 27, 1;
1, 16, 216, 256, 1;
1, 25, 1000, 10000, 3125, 1;
1, 36, 3375, 160000, 759375, 46656, 1;
1, 49, 9261, 1500625, 52521875, 85766121, 823543, 1;
1, 64, 21952, 9834496, 1680700000, 30840979456, 13492928512, 16777216, 1; ...
MATRIX INVERSE.
The matrix inverse starts
1;
-1,1;
3,-4,1;
-73,99,-27,1;
18055,-24496,6696,-256,1;
-55694851,75563975,-20656000,790000,-3125,1; - R. J. Mathar, Mar 22 2013
MATHEMATICA
Table[Binomial[n, k]^(k+1), {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Aug 15 2016 *)
PROG
(PARI) {T(n, k)=binomial(n, k)^(k+1)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 14 2012
STATUS
approved