login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219207
Triangle, read by rows, where T(n,k) = binomial(n,k)^(k+1) for n>=0, k=0..n.
4
1, 1, 1, 1, 4, 1, 1, 9, 27, 1, 1, 16, 216, 256, 1, 1, 25, 1000, 10000, 3125, 1, 1, 36, 3375, 160000, 759375, 46656, 1, 1, 49, 9261, 1500625, 52521875, 85766121, 823543, 1, 1, 64, 21952, 9834496, 1680700000, 30840979456, 13492928512, 16777216, 1, 1, 81, 46656
OFFSET
0,5
COMMENTS
Maximal term in row n is asymptotically in position k = r*n, where r = A220359 = 0.70350607643... is a root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Nov 15 2012
LINKS
FORMULA
Row sums equal A184731.
EXAMPLE
Triangle of coefficients C(n,k)^(k+1) begins:
1;
1, 1;
1, 4, 1;
1, 9, 27, 1;
1, 16, 216, 256, 1;
1, 25, 1000, 10000, 3125, 1;
1, 36, 3375, 160000, 759375, 46656, 1;
1, 49, 9261, 1500625, 52521875, 85766121, 823543, 1;
1, 64, 21952, 9834496, 1680700000, 30840979456, 13492928512, 16777216, 1; ...
MATRIX INVERSE.
The matrix inverse starts
1;
-1,1;
3,-4,1;
-73,99,-27,1;
18055,-24496,6696,-256,1;
-55694851,75563975,-20656000,790000,-3125,1; - R. J. Mathar, Mar 22 2013
MATHEMATICA
Table[Binomial[n, k]^(k+1), {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Aug 15 2016 *)
PROG
(PARI) {T(n, k)=binomial(n, k)^(k+1)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 14 2012
STATUS
approved