OFFSET
0,2
COMMENTS
Note that the following g.f. does NOT yield an integer series:
. exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^k] * x^n/n ).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..74
FORMULA
Equals row sums of triangle A228899.
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A184731(k)*a(n-k) for n > 0. - Seiichi Manyama, Jan 10 2019
EXAMPLE
G.f.: A(x) = 1 + 2*x + 5*x^2 + 20*x^3 + 159*x^4 + 3152*x^5 +...
log(A(x)) = 2*x + 6*x^2/2 + 38*x^3/3 + 490*x^4/4 + 14152*x^5/5 + 969444*x^6/6 +...+ A184731(n)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^(k+1))*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 20 2011
STATUS
approved