login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184731
a(n) = Sum_{k=0..n} C(n,k)^(k+1).
8
1, 2, 6, 38, 490, 14152, 969444, 140621476, 46041241698, 36363843928316, 62022250535177416, 236043875222171125276, 2205302277098968939256248, 45728754995013679582534494332, 2070631745797418828103776968679204
OFFSET
0,2
LINKS
FORMULA
Forms the logarithmic derivative of A184730 (ignoring the initial term).
Limit n->infinity a(n)^(1/n^2) = (1-r)^(-r/2) = 1.53362806511..., where r = 0.70350607643... (see A220359) is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Jan 29 2014
EXAMPLE
The terms begin:
a(0) = 1;
a(1) = 1 + 1^2 = 2;
a(2) = 1 + 2^2 + 1^3 = 6;
a(3) = 1 + 3^2 + 3^3 + 1^4 = 38;
a(4) = 1 + 4^2 + 6^3 + 4^4 + 1^5 = 490;
a(5) = 1 + 5^2 + 10^3 + 10^4 + 5^5 + 1^6 = 14152.
MATHEMATICA
Table[Sum[Binomial[n, k]^(k+1), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jan 29 2014 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)^(k+1))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 20 2011
STATUS
approved