OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..74
FORMULA
Forms the logarithmic derivative of A184730 (ignoring the initial term).
Limit n->infinity a(n)^(1/n^2) = (1-r)^(-r/2) = 1.53362806511..., where r = 0.70350607643... (see A220359) is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Jan 29 2014
EXAMPLE
The terms begin:
a(0) = 1;
a(1) = 1 + 1^2 = 2;
a(2) = 1 + 2^2 + 1^3 = 6;
a(3) = 1 + 3^2 + 3^3 + 1^4 = 38;
a(4) = 1 + 4^2 + 6^3 + 4^4 + 1^5 = 490;
a(5) = 1 + 5^2 + 10^3 + 10^4 + 5^5 + 1^6 = 14152.
MATHEMATICA
Table[Sum[Binomial[n, k]^(k+1), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jan 29 2014 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)^(k+1))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 20 2011
STATUS
approved