|
|
A181076
|
|
G.f.: exp( Sum_{n>=1} [ Sum_{k>=0} C(n+k-1,k)^n *x^k ] *x^n/n ).
|
|
5
|
|
|
1, 1, 2, 5, 20, 168, 3659, 204644, 25503314, 7434144333, 5248999682258, 8079852389207554, 28328874782544308254, 244277149833867010587231, 4673118265932181394325207044, 198007423467261943865049734612821
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Conjecture: this sequence consists entirely of integers.
|
|
LINKS
|
|
|
EXAMPLE
|
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 20*x^4 + 168*x^5 + 3659*x^6 +...
The logarithm begins:
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 59*x^4/4 + 726*x^5/5 + 20832*x^6/6 +...+ A181077(n)*x^n/n +...
which equals the series:
log(A(x)) = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 +...)*x
+ (1 + 2^2*x + 3^2*x^2 + 4^2*x^3 + 5^2*x^4 + 6^2*x^5 +...)*x^2/2
+ (1 + 3^3*x + 6^3*x^2 + 10^3*x^3 + 15^3*x^4 + 21^3*x^5 +...)*x^3/3
+ (1 + 4^4*x + 10^4*x^2 + 20^4*x^3 + 35^4*x^4 + 56^4*x^5 +...)*x^4/4
+ (1 + 5^5*x + 15^5*x^2 + 35^5*x^3 + 70^5*x^4 + 126^5*x^5 +...)*x^5/5
+ (1 + 6^6*x + 21^6*x^2 + 56^6*x^3 + 126^6*x^4 + 252^6*x^5 +...)*x^6/6
+ (1 + 7^7*x + 28^7*x^2 + 84^7*x^3 + 210^7*x^4 + 462^7*x^5 +...)*x^7/7 +...
|
|
PROG
|
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, n, binomial(m+k-1, k)^m*x^k)*x^m/m)+x*O(x^n)), n)}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|