login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181076
G.f.: exp( Sum_{n>=1} [ Sum_{k>=0} C(n+k-1,k)^n *x^k ] *x^n/n ).
5
1, 1, 2, 5, 20, 168, 3659, 204644, 25503314, 7434144333, 5248999682258, 8079852389207554, 28328874782544308254, 244277149833867010587231, 4673118265932181394325207044, 198007423467261943865049734612821
OFFSET
0,3
COMMENTS
Conjecture: this sequence consists entirely of integers.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 20*x^4 + 168*x^5 + 3659*x^6 +...
The logarithm begins:
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 59*x^4/4 + 726*x^5/5 + 20832*x^6/6 +...+ A181077(n)*x^n/n +...
which equals the series:
log(A(x)) = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 +...)*x
+ (1 + 2^2*x + 3^2*x^2 + 4^2*x^3 + 5^2*x^4 + 6^2*x^5 +...)*x^2/2
+ (1 + 3^3*x + 6^3*x^2 + 10^3*x^3 + 15^3*x^4 + 21^3*x^5 +...)*x^3/3
+ (1 + 4^4*x + 10^4*x^2 + 20^4*x^3 + 35^4*x^4 + 56^4*x^5 +...)*x^4/4
+ (1 + 5^5*x + 15^5*x^2 + 35^5*x^3 + 70^5*x^4 + 126^5*x^5 +...)*x^5/5
+ (1 + 6^6*x + 21^6*x^2 + 56^6*x^3 + 126^6*x^4 + 252^6*x^5 +...)*x^6/6
+ (1 + 7^7*x + 28^7*x^2 + 84^7*x^3 + 210^7*x^4 + 462^7*x^5 +...)*x^7/7 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, n, binomial(m+k-1, k)^m*x^k)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A181077 (log), variants: A181074, A181078.
Sequence in context: A111885 A159320 A184730 * A156871 A058109 A005331
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 02 2010
STATUS
approved