login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181073
Permutations of lengths 1,2,3,... arranged lexicographically that are relatively prime to 30.
3
1, 1243, 1423, 2143, 2341, 2413, 2431, 3241, 3421, 4123, 4213, 4231, 4321, 1234567, 1234657, 1235467, 1235647, 1236457, 1236547, 1243567, 1243657, 1245367, 1245637, 1245673, 1245763, 1246357, 1246537, 1246573, 1246753
OFFSET
1,2
COMMENTS
Numbers whose digits are permutations of (1,2,3,4,...,n) for some n >= 1, for which the first 3 primes (2,3,5) do not appear in their factorization. This constitutes the smallest subset of A030299 for which it's possible to synthesize a compact formula to express the generic term: it contains every prime number already in A030299.
In fact it corresponds to the subset of the terms of A030299 constructed from the concatenation of k:=1+3*i (for i >= 0) elements belonging to (1,2,3,4,...,n) that are congruent in modulo 10 to (1,3,7,9).
MATHEMATICA
f[n_] := Select[ FromDigits@ # & /@ Permutations@ Range@ n, Mod[#, 2] != 0 && Mod[#, 3] != 0 && Mod[#, 5] != 0 &]; Take[ Flatten@ Array[f, 7], 35]
CROSSREFS
Sequence in context: A209711 A228964 A047628 * A023065 A375801 A190413
KEYWORD
nonn,easy,base,less
AUTHOR
Marco Ripà, Jan 23 2011
STATUS
approved