|
|
A228964
|
|
Smallest sets of 7 consecutive abundant numbers in arithmetic progression. The initial abundant number is listed.
|
|
3
|
|
|
1242, 6702, 7962, 12162, 13842, 15522, 16362, 18042, 18882, 19722, 24762, 26442, 27282, 27702, 28122, 28962, 36942, 38202, 39462, 43662, 44922, 45762, 48282, 48702, 51222, 55842, 56682, 60042, 62562, 63402, 66762, 69282, 69702, 70962, 71802, 73062, 73482
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
1242, 1248, 1254, 1260, 1266, 1272, 1278 is the smallest set of 7 consecutive abundant numbers in arithmetic progression so 1242 is in the list.
|
|
MATHEMATICA
|
AbundantQ[n_] := DivisorSigma[1, n] > 2 n; m = 2; z1 = 18; cd = 6; a = {}; Do[If[AbundantQ[n], If[n - z1 == cd, m = m + 1; If[m > 6, AppendTo[a, n - 6*cd]], m = 2; cd = n - z1]; z1 = n], {n, 19, 1000000}]; a
Select[Partition[Select[Range[80000], DivisorSigma[1, #]>2#&], 7, 1], Length[ Union[ Differences[#]]] ==1&][[All, 1]] (* Harvey P. Dale, Oct 15 2017 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|