|
|
A190413
|
|
primepi(R_{n*m}) <= n*primepi(R_m) for m >= a(n), where R_k is the k-th Ramanujan prime (A104272).
|
|
2
|
|
|
1, 1245, 189, 189, 85, 85, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
This is Conjecture 1 in the paper by Sondow, Nicholson, and Noe. The conjecture has been verified for n <= 20 and Ramanujan primes less than 10^9.
A restatement is rho(n*m) <= n*rho(m) for m >= a(n), where rho = A179196.
The conjecture has been proven for n > 10^300 by Shichun Yang and Alain Togbé. - Jonathan Sondow, Jan 21 2016
The conjecture has been proven for n > 38 and m > 9 by Christian Axler. Complete exception list can be found in remark of paper. - John W. Nicholson, Aug 04 2019
|
|
LINKS
|
|
|
FORMULA
|
For all n >= 20, a(n) = 2.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|