|
|
A190413
|
|
primepi(R_{n*m}) <= n*primepi(R_m) for m >= a(n), where R_k is the k-th Ramanujan prime (A104272).
|
|
2
|
|
|
1, 1245, 189, 189, 85, 85, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
This is Conjecture 1 in the paper by Sondow, Nicholson, and Noe. The conjecture has been verified for n <= 20 and Ramanujan primes less than 10^9.
A restatement is rho(n*m) <= n*rho(m) for m >= a(n), where rho = A179196.
The conjecture has been proven for n > 10^300 by Shichun Yang and Alain Togbé. - Jonathan Sondow, Jan 21 2016
The conjecture has been proven for n > 38 and m > 9 by Christian Axler. Complete exception list can be found in remark of paper. - John W. Nicholson, Aug 04 2019
|
|
LINKS
|
Table of n, a(n) for n=1..79.
Christian Axler, On the number of primes up to the n-th Ramanujan prime, arXiv:1711.04588 [math.NT], 2017.
J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly 116 (2009) 630-635.
J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2.
Shichun Yang and Alain Togbé, On the estimates of the upper and lower bounds of Ramanujan primes, Ramanujan J., online 14 August 2015, 1-11.
|
|
FORMULA
|
For all n >= 20, a(n) = 2.
|
|
CROSSREFS
|
Cf. A007395, A104272, A179196, A190414.
Sequence in context: A047628 A181073 A023065 * A252675 A066696 A195006
Adjacent sequences: A190410 A190411 A190412 * A190414 A190415 A190416
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
T. D. Noe, May 11 2011
|
|
STATUS
|
approved
|
|
|
|