login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179196
Number of primes up to the n-th Ramanujan prime: A000720(A104272(n)).
12
1, 5, 7, 10, 13, 15, 17, 19, 20, 25, 26, 28, 31, 35, 36, 39, 41, 42, 49, 50, 51, 52, 53, 56, 57, 60, 63, 64, 69, 70, 73, 74, 79, 80, 81, 83, 84, 85, 89, 93, 94, 96, 104, 105, 107, 108, 109, 110, 111, 116, 117, 118, 119, 120, 123, 128, 129, 131, 133, 136, 140, 142, 143
OFFSET
1,2
COMMENTS
a(n) = k = pi(p_k) = pi(R_n), where pi is the prime number counting function and R_n is the n-th Ramanujan prime. I.e., p_k, the k-th prime, is the n-th Ramanujan prime.
Prime index of A168421(n), that is A000720(A168421(n)), is equal to a(n) - n + 1. - John W. Nicholson, Sep 16 2015
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Christian Axler, On the number of primes up to the nth Ramanujan prime, arXiv:1711.04588 [math.NT], 2017.
Christian Axler, On Ramanujan primes, Functiones et Approximatio Commentarii Mathematici (2019).
S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
H. W. Shapiro, Iterates of arithmetic functions and a property of the sequence of primes, Pacific J. Math. Volume 3, Number 3 (1953), 647-655.
J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 7(2009), 630-635.
J. Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009, 2010.
J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2.
Wikipedia, Ramanujan prime
FORMULA
a(n) = A000720(A104272(n)).
a(n) = rho(n) in the paper by Sondow, Nicholson, and Noe.
prime(a(n)) = R_n = A104272(n).
a(n) = A000720(A168421(n)) + n - 1. - John W. Nicholson, Sep 16 2015
EXAMPLE
The 10th Ramanujan prime is 97, and pi(97) = 25, so a(10) = 25.
MATHEMATICA
f[n_] := With[{s = Table[{k, PrimePi[k] - PrimePi[k/2]}, {k, Prime[3 n]}]}, Table[1 + First@ Last@ Select[s, Last@ # == i - 1 &], {i, n}]]; PrimePi@ f@ 63 (* Michael De Vlieger, Nov 14 2017, after Jonathan Sondow at A104272 *)
PROG
(Perl) use ntheory ":all"; say prime_count(nth_ramanujan_prime($_)) for 1..100; # Dana Jacobsen, Dec 25 2015
CROSSREFS
Sequence in context: A175766 A243187 A333308 * A024325 A060873 A186542
KEYWORD
nonn
AUTHOR
John W. Nicholson, Jul 02 2010
STATUS
approved